Nuprl Lemma : enumerate_wf

[P:ℕ ⟶ 𝔹]. ∀[n:ℕ].  enumerate(P;n) ∈ {k:ℕ| ↑(P k)}  supposing ∀n:ℕ. ∃k:ℕ((↑(P k)) ∧ (n ≤ k))


Proof




Definitions occuring in Statement :  enumerate: enumerate(P;n) nat: assert: b bool: 𝔹 uimplies: supposing a uall: [x:A]. B[x] le: A ≤ B all: x:A. B[x] exists: x:A. B[x] and: P ∧ Q member: t ∈ T set: {x:A| B[x]}  apply: a function: x:A ⟶ B[x]
Definitions unfolded in proof :  enumerate: enumerate(P;n) uall: [x:A]. B[x] member: t ∈ T nat: implies:  Q false: False ge: i ≥  uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] not: ¬A all: x:A. B[x] top: Top and: P ∧ Q prop: so_lambda: λ2x.t[x] so_apply: x[s] decidable: Dec(P) or: P ∨ Q le: A ≤ B less_than': less_than'(a;b) guard: {T} bool: 𝔹 unit: Unit it: btrue: tt subtype_rel: A ⊆B uiff: uiff(P;Q) ifthenelse: if then else fi  bfalse: ff iff: ⇐⇒ Q rev_implies:  Q squash: T subtract: m sq_type: SQType(T) assert: b true: True has-value: (a)↓
Lemmas referenced :  nat_properties satisfiable-full-omega-tt intformand_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf int_formula_prop_and_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf ge_wf less_than_wf all_wf nat_wf exists_wf assert_wf le_wf primrec0_lemma decidable__le subtract_wf intformnot_wf itermSubtract_wf int_formula_prop_not_lemma int_term_value_subtract_lemma bool_wf false_wf mu-property primrec-unroll eq_int_wf uiff_transitivity equal-wf-base int_subtype_base eqtt_to_assert assert_of_eq_int intformeq_wf int_formula_prop_eq_lemma iff_transitivity bnot_wf not_wf iff_weakening_uiff eqff_to_assert assert_of_bnot equal_wf itermAdd_wf int_term_value_add_lemma add-is-int-iff set_subtype_base add-associates minus-add minus-one-mul add-swap add-mul-special add-commutes zero-add zero-mul add-zero subtype_base_sq assert_elim bool_subtype_base value-type-has-value int-value-type mu_wf add_nat_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis setElimination rename intWeakElimination lambdaFormation natural_numberEquality independent_isectElimination dependent_pairFormation lambdaEquality int_eqEquality intEquality dependent_functionElimination isect_memberEquality voidElimination voidEquality independent_pairFormation computeAll independent_functionElimination axiomEquality equalityTransitivity equalitySymmetry productEquality applyEquality functionExtensionality unionElimination because_Cache functionEquality dependent_set_memberEquality productElimination equalityElimination baseApply closedConclusion baseClosed impliesFunctionality applyLambdaEquality imageMemberEquality imageElimination addEquality multiplyEquality instantiate cumulativity callbyvalueReduce

Latex:
\mforall{}[P:\mBbbN{}  {}\mrightarrow{}  \mBbbB{}].  \mforall{}[n:\mBbbN{}].    enumerate(P;n)  \mmember{}  \{k:\mBbbN{}|  \muparrow{}(P  k)\}    supposing  \mforall{}n:\mBbbN{}.  \mexists{}k:\mBbbN{}.  ((\muparrow{}(P  k))  \mwedge{}  (n  \mleq{}  k))



Date html generated: 2018_05_21-PM-07_58_35
Last ObjectModification: 2017_07_26-PM-05_35_51

Theory : general


Home Index