Nuprl Lemma : enumerate_wf
∀[P:ℕ ⟶ 𝔹]. ∀[n:ℕ].  enumerate(P;n) ∈ {k:ℕ| ↑(P k)}  supposing ∀n:ℕ. ∃k:ℕ. ((↑(P k)) ∧ (n ≤ k))
Proof
Definitions occuring in Statement : 
enumerate: enumerate(P;n)
, 
nat: ℕ
, 
assert: ↑b
, 
bool: 𝔹
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
le: A ≤ B
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
and: P ∧ Q
, 
member: t ∈ T
, 
set: {x:A| B[x]} 
, 
apply: f a
, 
function: x:A ⟶ B[x]
Definitions unfolded in proof : 
enumerate: enumerate(P;n)
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
nat: ℕ
, 
implies: P 
⇒ Q
, 
false: False
, 
ge: i ≥ j 
, 
uimplies: b supposing a
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
not: ¬A
, 
all: ∀x:A. B[x]
, 
top: Top
, 
and: P ∧ Q
, 
prop: ℙ
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
le: A ≤ B
, 
less_than': less_than'(a;b)
, 
guard: {T}
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
btrue: tt
, 
subtype_rel: A ⊆r B
, 
uiff: uiff(P;Q)
, 
ifthenelse: if b then t else f fi 
, 
bfalse: ff
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
squash: ↓T
, 
subtract: n - m
, 
sq_type: SQType(T)
, 
assert: ↑b
, 
true: True
, 
has-value: (a)↓
Lemmas referenced : 
nat_properties, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
intformless_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_wf, 
ge_wf, 
less_than_wf, 
all_wf, 
nat_wf, 
exists_wf, 
assert_wf, 
le_wf, 
primrec0_lemma, 
decidable__le, 
subtract_wf, 
intformnot_wf, 
itermSubtract_wf, 
int_formula_prop_not_lemma, 
int_term_value_subtract_lemma, 
bool_wf, 
false_wf, 
mu-property, 
primrec-unroll, 
eq_int_wf, 
uiff_transitivity, 
equal-wf-base, 
int_subtype_base, 
eqtt_to_assert, 
assert_of_eq_int, 
intformeq_wf, 
int_formula_prop_eq_lemma, 
iff_transitivity, 
bnot_wf, 
not_wf, 
iff_weakening_uiff, 
eqff_to_assert, 
assert_of_bnot, 
equal_wf, 
itermAdd_wf, 
int_term_value_add_lemma, 
add-is-int-iff, 
set_subtype_base, 
add-associates, 
minus-add, 
minus-one-mul, 
add-swap, 
add-mul-special, 
add-commutes, 
zero-add, 
zero-mul, 
add-zero, 
subtype_base_sq, 
assert_elim, 
bool_subtype_base, 
value-type-has-value, 
int-value-type, 
mu_wf, 
add_nat_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
setElimination, 
rename, 
intWeakElimination, 
lambdaFormation, 
natural_numberEquality, 
independent_isectElimination, 
dependent_pairFormation, 
lambdaEquality, 
int_eqEquality, 
intEquality, 
dependent_functionElimination, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
independent_pairFormation, 
computeAll, 
independent_functionElimination, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
productEquality, 
applyEquality, 
functionExtensionality, 
unionElimination, 
because_Cache, 
functionEquality, 
dependent_set_memberEquality, 
productElimination, 
equalityElimination, 
baseApply, 
closedConclusion, 
baseClosed, 
impliesFunctionality, 
applyLambdaEquality, 
imageMemberEquality, 
imageElimination, 
addEquality, 
multiplyEquality, 
instantiate, 
cumulativity, 
callbyvalueReduce
Latex:
\mforall{}[P:\mBbbN{}  {}\mrightarrow{}  \mBbbB{}].  \mforall{}[n:\mBbbN{}].    enumerate(P;n)  \mmember{}  \{k:\mBbbN{}|  \muparrow{}(P  k)\}    supposing  \mforall{}n:\mBbbN{}.  \mexists{}k:\mBbbN{}.  ((\muparrow{}(P  k))  \mwedge{}  (n  \mleq{}  k))
Date html generated:
2018_05_21-PM-07_58_35
Last ObjectModification:
2017_07_26-PM-05_35_51
Theory : general
Home
Index