Nuprl Lemma : mu-unroll

[f:Top]. (mu(f) if then else mu(λi.(f (i 1))) fi )


Proof




Definitions occuring in Statement :  mu: mu(f) ifthenelse: if then else fi  uall: [x:A]. B[x] top: Top apply: a lambda: λx.A[x] add: m natural_number: $n sqequal: t
Definitions unfolded in proof :  mu-ge: mu-ge(f;n) mu: mu(f) member: t ∈ T uall: [x:A]. B[x] all: x:A. B[x] exists: x:A. B[x] nat: implies:  Q false: False ge: i ≥  uimplies: supposing a not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) top: Top and: P ∧ Q prop: le: A ≤ B less_than': less_than'(a;b) ifthenelse: if then else fi  eq_int: (i =z j) btrue: tt bottom: decidable: Dec(P) or: P ∨ Q bool: 𝔹 unit: Unit it: uiff: uiff(P;Q) bfalse: ff sq_type: SQType(T) guard: {T} bnot: ¬bb assert: b compose: g subtract: m so_lambda: so_lambda(x,y,z,w.t[x; y; z; w]) so_apply: x[s1;s2;s3;s4] strict4: strict4(F) has-value: (a)↓ squash: T so_lambda: λ2x.t[x] so_apply: x[s] subtype_rel: A ⊆B
Lemmas referenced :  istype-top base_wf istype-sqequal nat_properties full-omega-unsat intformand_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf istype-int int_formula_prop_and_lemma istype-void int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf ge_wf istype-less_than fun_exp_unroll istype-le strictness-apply bottom-sqle subtract-1-ge-0 decidable__le intformnot_wf int_formula_prop_not_lemma eq_int_wf eqtt_to_assert assert_of_eq_int intformeq_wf int_formula_prop_eq_lemma eqff_to_assert bool_cases_sqequal subtype_base_sq bool_wf bool_subtype_base assert-bnot neg_assert_of_eq_int lifting-strict-ifthenelse value-type-has-value int-value-type has-value_wf_base istype-base is-exception_wf lifting-strict-callbyvalue int_subtype_base strictness-add-left exception-not-value
Rules used in proof :  extract_by_obid axiomSqEquality hypothesis sqleReflexivity callbyvalueReduce sqequalRule cut introduction Error :isect_memberFormation_alt,  sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution Error :universeIsType,  Error :lambdaFormation_alt,  thin Error :dependent_pairFormation_alt,  baseClosed sqequalHypSubstitution isectElimination hypothesisEquality productElimination promote_hyp sqequalSqle fixpointLeast setElimination rename intWeakElimination natural_numberEquality independent_isectElimination approximateComputation independent_functionElimination Error :lambdaEquality_alt,  int_eqEquality dependent_functionElimination Error :isect_memberEquality_alt,  voidElimination independent_pairFormation axiomSqleEquality Error :functionIsTypeImplies,  Error :inhabitedIsType,  Error :dependent_set_memberEquality_alt,  because_Cache unionElimination equalityElimination equalityTransitivity equalitySymmetry Error :equalityIstype,  instantiate cumulativity baseApply closedConclusion callbyvalueAdd intEquality addExceptionCases exceptionSqequal Error :inrFormation_alt,  imageMemberEquality imageElimination Error :inlFormation_alt,  sqleRule divergentSqle applyEquality callbyvalueCallbyvalue callbyvalueExceptionCases addEquality

Latex:
\mforall{}[f:Top].  (mu(f)  \msim{}  if  f  0  then  0  else  mu(\mlambda{}i.(f  (i  +  1)))  +  1  fi  )



Date html generated: 2019_06_20-PM-01_17_18
Last ObjectModification: 2019_05_01-PM-05_04_08

Theory : int_2


Home Index