Nuprl Lemma : mu-unroll
∀[f:Top]. (mu(f) ~ if f 0 then 0 else mu(λi.(f (i + 1))) + 1 fi )
Proof
Definitions occuring in Statement : 
mu: mu(f), 
ifthenelse: if b then t else f fi , 
uall: ∀[x:A]. B[x], 
top: Top, 
apply: f a, 
lambda: λx.A[x], 
add: n + m, 
natural_number: $n, 
sqequal: s ~ t
Definitions unfolded in proof : 
mu-ge: mu-ge(f;n), 
mu: mu(f), 
member: t ∈ T, 
uall: ∀[x:A]. B[x], 
all: ∀x:A. B[x], 
exists: ∃x:A. B[x], 
nat: ℕ, 
implies: P ⇒ Q, 
false: False, 
ge: i ≥ j , 
uimplies: b supposing a, 
not: ¬A, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
top: Top, 
and: P ∧ Q, 
prop: ℙ, 
le: A ≤ B, 
less_than': less_than'(a;b), 
ifthenelse: if b then t else f fi , 
eq_int: (i =z j), 
btrue: tt, 
bottom: ⊥, 
decidable: Dec(P), 
or: P ∨ Q, 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
uiff: uiff(P;Q), 
bfalse: ff, 
sq_type: SQType(T), 
guard: {T}, 
bnot: ¬bb, 
assert: ↑b, 
compose: f o g, 
subtract: n - m, 
so_lambda: so_lambda(x,y,z,w.t[x; y; z; w]), 
so_apply: x[s1;s2;s3;s4], 
strict4: strict4(F), 
has-value: (a)↓, 
squash: ↓T, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
subtype_rel: A ⊆r B
Lemmas referenced : 
istype-top, 
base_wf, 
istype-sqequal, 
nat_properties, 
full-omega-unsat, 
intformand_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
intformless_wf, 
istype-int, 
int_formula_prop_and_lemma, 
istype-void, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_wf, 
ge_wf, 
istype-less_than, 
fun_exp_unroll, 
istype-le, 
strictness-apply, 
bottom-sqle, 
subtract-1-ge-0, 
decidable__le, 
intformnot_wf, 
int_formula_prop_not_lemma, 
eq_int_wf, 
eqtt_to_assert, 
assert_of_eq_int, 
intformeq_wf, 
int_formula_prop_eq_lemma, 
eqff_to_assert, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_wf, 
bool_subtype_base, 
assert-bnot, 
neg_assert_of_eq_int, 
lifting-strict-ifthenelse, 
value-type-has-value, 
int-value-type, 
has-value_wf_base, 
istype-base, 
is-exception_wf, 
lifting-strict-callbyvalue, 
int_subtype_base, 
strictness-add-left, 
exception-not-value
Rules used in proof : 
extract_by_obid, 
axiomSqEquality, 
hypothesis, 
sqleReflexivity, 
callbyvalueReduce, 
sqequalRule, 
cut, 
introduction, 
Error :isect_memberFormation_alt, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution, 
Error :universeIsType, 
Error :lambdaFormation_alt, 
thin, 
Error :dependent_pairFormation_alt, 
baseClosed, 
sqequalHypSubstitution, 
isectElimination, 
hypothesisEquality, 
productElimination, 
promote_hyp, 
sqequalSqle, 
fixpointLeast, 
setElimination, 
rename, 
intWeakElimination, 
natural_numberEquality, 
independent_isectElimination, 
approximateComputation, 
independent_functionElimination, 
Error :lambdaEquality_alt, 
int_eqEquality, 
dependent_functionElimination, 
Error :isect_memberEquality_alt, 
voidElimination, 
independent_pairFormation, 
axiomSqleEquality, 
Error :functionIsTypeImplies, 
Error :inhabitedIsType, 
Error :dependent_set_memberEquality_alt, 
because_Cache, 
unionElimination, 
equalityElimination, 
equalityTransitivity, 
equalitySymmetry, 
Error :equalityIstype, 
instantiate, 
cumulativity, 
baseApply, 
closedConclusion, 
callbyvalueAdd, 
intEquality, 
addExceptionCases, 
exceptionSqequal, 
Error :inrFormation_alt, 
imageMemberEquality, 
imageElimination, 
Error :inlFormation_alt, 
sqleRule, 
divergentSqle, 
applyEquality, 
callbyvalueCallbyvalue, 
callbyvalueExceptionCases, 
addEquality
Latex:
\mforall{}[f:Top].  (mu(f)  \msim{}  if  f  0  then  0  else  mu(\mlambda{}i.(f  (i  +  1)))  +  1  fi  )
Date html generated:
2019_06_20-PM-01_17_18
Last ObjectModification:
2019_05_01-PM-05_04_08
Theory : int_2
Home
Index