Nuprl Lemma : lifting-strict-ifthenelse
∀[F:Base]. ∀[p,q,r:Top].
  ∀[a,A,B:Top].  (F[if a then A else B fi p;q;r] ~ if a then F[A;p;q;r] else F[B;p;q;r] fi ) 
  supposing strict4(λx,y,z,w. F[x;y;z;w])
Proof
Definitions occuring in Statement : 
strict4: strict4(F)
, 
ifthenelse: if b then t else f fi 
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
top: Top
, 
so_apply: x[s1;s2;s3;s4]
, 
lambda: λx.A[x]
, 
base: Base
, 
sqequal: s ~ t
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
prop: ℙ
, 
ifthenelse: if b then t else f fi 
, 
so_lambda: λ2x.t[x]
, 
top: Top
, 
so_apply: x[s]
Lemmas referenced : 
lifting-strict-decide, 
base_wf, 
strict4_wf, 
top_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
hypothesis, 
sqequalAxiom, 
lemma_by_obid, 
sqequalRule, 
sqequalHypSubstitution, 
isect_memberEquality, 
isectElimination, 
thin, 
hypothesisEquality, 
because_Cache, 
baseApply, 
closedConclusion, 
baseClosed, 
equalityTransitivity, 
equalitySymmetry, 
independent_isectElimination, 
voidElimination, 
voidEquality
Latex:
\mforall{}[F:Base].  \mforall{}[p,q,r:Top].
    \mforall{}[a,A,B:Top].    (F[if  a  then  A  else  B  fi  ;p;q;r]  \msim{}  if  a  then  F[A;p;q;r]  else  F[B;p;q;r]  fi  ) 
    supposing  strict4(\mlambda{}x,y,z,w.  F[x;y;z;w])
Date html generated:
2016_05_13-PM-03_41_54
Last ObjectModification:
2016_01_14-PM-07_08_57
Theory : computation
Home
Index