Nuprl Lemma : lifting-strict-ifthenelse

[F:Base]. ∀[p,q,r:Top].
  ∀[a,A,B:Top].  (F[if then else fi ;p;q;r] if then F[A;p;q;r] else F[B;p;q;r] fi 
  supposing strict4(λx,y,z,w. F[x;y;z;w])


Proof




Definitions occuring in Statement :  strict4: strict4(F) ifthenelse: if then else fi  uimplies: supposing a uall: [x:A]. B[x] top: Top so_apply: x[s1;s2;s3;s4] lambda: λx.A[x] base: Base sqequal: t
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a prop: ifthenelse: if then else fi  so_lambda: λ2x.t[x] top: Top so_apply: x[s]
Lemmas referenced :  lifting-strict-decide base_wf strict4_wf top_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut hypothesis sqequalAxiom lemma_by_obid sqequalRule sqequalHypSubstitution isect_memberEquality isectElimination thin hypothesisEquality because_Cache baseApply closedConclusion baseClosed equalityTransitivity equalitySymmetry independent_isectElimination voidElimination voidEquality

Latex:
\mforall{}[F:Base].  \mforall{}[p,q,r:Top].
    \mforall{}[a,A,B:Top].    (F[if  a  then  A  else  B  fi  ;p;q;r]  \msim{}  if  a  then  F[A;p;q;r]  else  F[B;p;q;r]  fi  ) 
    supposing  strict4(\mlambda{}x,y,z,w.  F[x;y;z;w])



Date html generated: 2016_05_13-PM-03_41_54
Last ObjectModification: 2016_01_14-PM-07_08_57

Theory : computation


Home Index