Step
*
1
1
1
1
1
1
2
of Lemma
extend-half-cube-face
1. k : ℕ
2. a : ℚCube(k)
3. b : ℚCube(k)
4. c : ℚCube(k)
5. ∀i:ℕk. (↑Inhabited(a i))
6. 0 < dim(b)
7. ∀i:ℕk. a i ≤ b i
8. ∀i:ℕk. (↑is-half-interval(b i;c i))
9. dim(a) = (dim(b) - 1) ∈ ℤ
10. i : ℕk
11. dim(c i) = 1 ∈ ℤ
12. ∀j:ℕk. ((¬(j = i ∈ ℤ))
⇒ ((a j) = (b j) ∈ ℚInterval))
13. (a i) = [fst((b i))] ∈ ℚInterval
14. (fst((b i))) = (fst((c i))) ∈ ℚ
15. (snd((b i))) = qavg(fst((c i));snd((c i))) ∈ ℚ
16. ∃!d:ℚCube(k). ((↑is-half-cube(k;a;d)) ∧ (∀i:ℕk. d i ≤ c i))
17. b' : ℚCube(k)
18. ↑is-half-cube(k;b';c)
19. ∀i:ℕk. a i ≤ b' i
⊢ b' = b ∈ ℚCube(k)
BY
{ ((RWO "assert-is-half-cube" (-2) THENA Auto)
THEN (Unfold `rational-cube` 0 THEN FunExt THEN Auto)
THEN (Assert a x ≤ b' x ∧ (↑is-half-interval(b x;c x)) ∧ (↑is-half-interval(b' x;c x)) BY
Auto)
THEN (Decide ⌜x = i ∈ ℤ⌝⋅ THENA Auto)
THEN ((HypSubst' (-1) 0 THEN HypSubst' (-1) (-2) THEN (RWO "13" (-2) THENA Auto))
ORELSE (RWO "12" (-2) THENA Auto)
)) }
1
1. k : ℕ
2. a : ℚCube(k)
3. b : ℚCube(k)
4. c : ℚCube(k)
5. ∀i:ℕk. (↑Inhabited(a i))
6. 0 < dim(b)
7. ∀i:ℕk. a i ≤ b i
8. ∀i:ℕk. (↑is-half-interval(b i;c i))
9. dim(a) = (dim(b) - 1) ∈ ℤ
10. i : ℕk
11. dim(c i) = 1 ∈ ℤ
12. ∀j:ℕk. ((¬(j = i ∈ ℤ))
⇒ ((a j) = (b j) ∈ ℚInterval))
13. (a i) = [fst((b i))] ∈ ℚInterval
14. (fst((b i))) = (fst((c i))) ∈ ℚ
15. (snd((b i))) = qavg(fst((c i));snd((c i))) ∈ ℚ
16. ∃!d:ℚCube(k). ((↑is-half-cube(k;a;d)) ∧ (∀i:ℕk. d i ≤ c i))
17. b' : ℚCube(k)
18. ∀i:ℕk. (↑is-half-interval(b' i;c i))
19. ∀i:ℕk. a i ≤ b' i
20. x : ℕk
21. [fst((b i))] ≤ b' i ∧ (↑is-half-interval(b i;c i)) ∧ (↑is-half-interval(b' i;c i))
22. x = i ∈ ℤ
⊢ (b' i) = (b i) ∈ ℚInterval
2
1. k : ℕ
2. a : ℚCube(k)
3. b : ℚCube(k)
4. c : ℚCube(k)
5. ∀i:ℕk. (↑Inhabited(a i))
6. 0 < dim(b)
7. ∀i:ℕk. a i ≤ b i
8. ∀i:ℕk. (↑is-half-interval(b i;c i))
9. dim(a) = (dim(b) - 1) ∈ ℤ
10. i : ℕk
11. dim(c i) = 1 ∈ ℤ
12. ∀j:ℕk. ((¬(j = i ∈ ℤ))
⇒ ((a j) = (b j) ∈ ℚInterval))
13. (a i) = [fst((b i))] ∈ ℚInterval
14. (fst((b i))) = (fst((c i))) ∈ ℚ
15. (snd((b i))) = qavg(fst((c i));snd((c i))) ∈ ℚ
16. ∃!d:ℚCube(k). ((↑is-half-cube(k;a;d)) ∧ (∀i:ℕk. d i ≤ c i))
17. b' : ℚCube(k)
18. ∀i:ℕk. (↑is-half-interval(b' i;c i))
19. ∀i:ℕk. a i ≤ b' i
20. x : ℕk
21. b x ≤ b' x ∧ (↑is-half-interval(b x;c x)) ∧ (↑is-half-interval(b' x;c x))
22. ¬(x = i ∈ ℤ)
⊢ (b' x) = (b x) ∈ ℚInterval
Latex:
Latex:
1. k : \mBbbN{}
2. a : \mBbbQ{}Cube(k)
3. b : \mBbbQ{}Cube(k)
4. c : \mBbbQ{}Cube(k)
5. \mforall{}i:\mBbbN{}k. (\muparrow{}Inhabited(a i))
6. 0 < dim(b)
7. \mforall{}i:\mBbbN{}k. a i \mleq{} b i
8. \mforall{}i:\mBbbN{}k. (\muparrow{}is-half-interval(b i;c i))
9. dim(a) = (dim(b) - 1)
10. i : \mBbbN{}k
11. dim(c i) = 1
12. \mforall{}j:\mBbbN{}k. ((\mneg{}(j = i)) {}\mRightarrow{} ((a j) = (b j)))
13. (a i) = [fst((b i))]
14. (fst((b i))) = (fst((c i)))
15. (snd((b i))) = qavg(fst((c i));snd((c i)))
16. \mexists{}!d:\mBbbQ{}Cube(k). ((\muparrow{}is-half-cube(k;a;d)) \mwedge{} (\mforall{}i:\mBbbN{}k. d i \mleq{} c i))
17. b' : \mBbbQ{}Cube(k)
18. \muparrow{}is-half-cube(k;b';c)
19. \mforall{}i:\mBbbN{}k. a i \mleq{} b' i
\mvdash{} b' = b
By
Latex:
((RWO "assert-is-half-cube" (-2) THENA Auto)
THEN (Unfold `rational-cube` 0 THEN FunExt THEN Auto)
THEN (Assert a x \mleq{} b' x \mwedge{} (\muparrow{}is-half-interval(b x;c x)) \mwedge{} (\muparrow{}is-half-interval(b' x;c x)) BY
Auto)
THEN (Decide \mkleeneopen{}x = i\mkleeneclose{}\mcdot{} THENA Auto)
THEN ((HypSubst' (-1) 0 THEN HypSubst' (-1) (-2) THEN (RWO "13" (-2) THENA Auto))
ORELSE (RWO "12" (-2) THENA Auto)
))
Home
Index