Nuprl Lemma : extend-half-cube-face

k:ℕ. ∀a,b,c:ℚCube(k).
  (0 < dim(c)
   a ≤ b
   (↑is-half-cube(k;b;c))
   (dim(a) (dim(b) 1) ∈ ℤ)
   (((∃!d:ℚCube(k). ((↑is-half-cube(k;a;d)) ∧ d ≤ c))
     ∧ (∀b':ℚCube(k). ((↑is-half-cube(k;b';c))  a ≤ b'  (b' b ∈ ℚCube(k)))))
     ∨ ((∃!b':ℚCube(k). (a ≤ b' ∧ (↑is-half-cube(k;b';c)) ∧ (b' b ∈ ℚCube(k))))) ∧ has-interior-point(k;a;c))))


Proof




Definitions occuring in Statement :  rat-cube-dimension: dim(c) has-interior-point: has-interior-point(k;c;a) is-half-cube: is-half-cube(k;h;c) rat-cube-face: c ≤ d rational-cube: Cube(k) nat: assert: b less_than: a < b exists!: !x:T. P[x] all: x:A. B[x] not: ¬A implies:  Q or: P ∨ Q and: P ∧ Q subtract: m natural_number: $n int: equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q rat-cube-dimension: dim(c) member: t ∈ T uall: [x:A]. B[x] or: P ∨ Q uimplies: supposing a sq_type: SQType(T) guard: {T} uiff: uiff(P;Q) and: P ∧ Q ifthenelse: if then else fi  btrue: tt bfalse: ff less_than: a < b squash: T less_than': less_than'(a;b) false: False nat: ge: i ≥  decidable: Dec(P) not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] top: Top prop: immediate-rc-face: immediate-rc-face(k;f;c) int_seg: {i..j-} lelt: i ≤ j < k le: A ≤ B true: True subtype_rel: A ⊆B so_lambda: λ2x.t[x] so_apply: x[s] rational-cube: Cube(k) rational-interval: Interval rat-interval-dimension: dim(I) is-half-interval: is-half-interval(I;J) cand: c∧ B pi2: snd(t) bool: 𝔹 unit: Unit it: iff: ⇐⇒ Q bnot: ¬bb assert: b rev_implies:  Q band: p ∧b q rat-cube-face: c ≤ d pi1: fst(t) exists!: !x:T. P[x] rev_uimplies: rev_uimplies(P;Q) nequal: a ≠ b ∈  rat-point-interval: [a] rat-interval-face: I ≤ J has-interior-point: has-interior-point(k;c;a) rat-point-in-cube: rat-point-in-cube(k;x;c) label: ...$L... t inhabited-rat-interval: Inhabited(I)
Lemmas referenced :  inhabited-rat-cube_wf bool_cases subtype_base_sq bool_wf bool_subtype_base eqtt_to_assert eqff_to_assert assert_of_bnot half-cube-dimension istype-assert nat_properties decidable__lt full-omega-unsat intformand_wf intformnot_wf intformless_wf itermConstant_wf itermVar_wf intformeq_wf istype-int int_formula_prop_and_lemma istype-void int_formula_prop_not_lemma int_formula_prop_less_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_eq_lemma int_formula_prop_wf immediate-rc-face-implies decidable__le intformle_wf itermSubtract_wf int_formula_prop_le_lemma int_term_value_subtract_lemma rat-cube-dimension_wf set_subtype_base lelt_wf int_subtype_base subtract_wf is-half-cube_wf rat-cube-face_wf istype-less_than rational-cube_wf istype-nat assert-is-half-cube rat-interval-dimension_wf rational-interval_wf rat-point-interval_wf pi1_wf_top rationals_wf subtype_rel_product top_wf q_less_wf assert-q_less-eq iff_weakening_equal bool_cases_sqequal assert-bnot qless_wf qless-qavg-iff-1 qavg_wf qavg-qless-iff-1 assert_wf bor_wf qeq_wf2 band_wf btrue_wf assert-qeq bfalse_wf equal_wf ifthenelse_wf iff_transitivity iff_weakening_uiff assert_of_bor assert_of_band assert-inhabited-rat-cube rat-interval-face_wf exists!_wf int_seg_wf not_wf has-interior-point_wf eq_int_wf assert_of_eq_int neg_assert_of_eq_int assert_functionality_wrt_uiff is-half-interval_wf member_wf qavg-eq-iff-1 squash_wf true_wf rat-interval-face-self pi2_wf istype-universe qavg-same subtype_rel_self nequal_wf qavg-eq-iff-4 decidable__equal_int qavg-eq-iff-7 qavg-eq-iff-3 int_seg_properties pair-eta istype-top qavg-eq-iff-2 qless_transitivity_2_qorder qle_weakening_eq_qorder qless_irreflexivity decidable__equal_rational-interval istype-le rat-point-in-cube_wf rat-point-in-cube-interior_wf qle_reflexivity qle_wf qle-qavg-iff-1 qavg-qle-iff-1 q_le_wf assert-q_le-eq center-point-in-cube-interior
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt cut sqequalHypSubstitution introduction extract_by_obid isectElimination thin hypothesisEquality hypothesis dependent_functionElimination because_Cache unionElimination instantiate cumulativity independent_isectElimination equalityTransitivity equalitySymmetry independent_functionElimination productElimination sqequalRule imageElimination voidElimination dependent_set_memberEquality_alt setElimination rename natural_numberEquality approximateComputation dependent_pairFormation_alt lambdaEquality_alt int_eqEquality isect_memberEquality_alt independent_pairFormation universeIsType promote_hyp equalityIstype applyEquality intEquality minusEquality addEquality inhabitedIsType sqequalBase productIsType baseClosed functionIsType unionIsType equalityElimination hyp_replacement applyLambdaEquality unionEquality productEquality inlFormation_alt inrFormation_alt functionEquality imageMemberEquality functionExtensionality independent_pairEquality universeEquality

Latex:
\mforall{}k:\mBbbN{}.  \mforall{}a,b,c:\mBbbQ{}Cube(k).
    (0  <  dim(c)
    {}\mRightarrow{}  a  \mleq{}  b
    {}\mRightarrow{}  (\muparrow{}is-half-cube(k;b;c))
    {}\mRightarrow{}  (dim(a)  =  (dim(b)  -  1))
    {}\mRightarrow{}  (((\mexists{}!d:\mBbbQ{}Cube(k).  ((\muparrow{}is-half-cube(k;a;d))  \mwedge{}  d  \mleq{}  c))
          \mwedge{}  (\mforall{}b':\mBbbQ{}Cube(k).  ((\muparrow{}is-half-cube(k;b';c))  {}\mRightarrow{}  a  \mleq{}  b'  {}\mRightarrow{}  (b'  =  b))))
          \mvee{}  ((\mexists{}!b':\mBbbQ{}Cube(k).  (a  \mleq{}  b'  \mwedge{}  (\muparrow{}is-half-cube(k;b';c))  \mwedge{}  (\mneg{}(b'  =  b))))
              \mwedge{}  has-interior-point(k;a;c))))



Date html generated: 2020_05_20-AM-09_21_32
Last ObjectModification: 2019_11_02-PM-08_05_29

Theory : rationals


Home Index