Nuprl Lemma : qavg_wf

[a,b:ℚ].  (qavg(a;b) ∈ ℚ)


Proof




Definitions occuring in Statement :  qavg: qavg(a;b) rationals: uall: [x:A]. B[x] member: t ∈ T
Definitions unfolded in proof :  qavg: qavg(a;b) uall: [x:A]. B[x] member: t ∈ T subtype_rel: A ⊆B uimplies: supposing a not: ¬A implies:  Q uiff: uiff(P;Q) and: P ∧ Q qeq: qeq(r;s) callbyvalueall: callbyvalueall evalall: evalall(t) ifthenelse: if then else fi  btrue: tt eq_int: (i =z j) bfalse: ff assert: b false: False prop:
Lemmas referenced :  qdiv_wf qadd_wf assert-qeq equal_wf rationals_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation introduction cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis natural_numberEquality applyEquality because_Cache independent_isectElimination lambdaFormation equalityTransitivity equalitySymmetry productElimination independent_pairFormation voidElimination axiomEquality isect_memberEquality

Latex:
\mforall{}[a,b:\mBbbQ{}].    (qavg(a;b)  \mmember{}  \mBbbQ{})



Date html generated: 2016_05_15-PM-11_05_59
Last ObjectModification: 2015_12_27-PM-07_45_25

Theory : rationals


Home Index