Nuprl Lemma : qavg_wf
∀[a,b:ℚ].  (qavg(a;b) ∈ ℚ)
Proof
Definitions occuring in Statement : 
qavg: qavg(a;b)
, 
rationals: ℚ
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
Definitions unfolded in proof : 
qavg: qavg(a;b)
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
subtype_rel: A ⊆r B
, 
uimplies: b supposing a
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
qeq: qeq(r;s)
, 
callbyvalueall: callbyvalueall, 
evalall: evalall(t)
, 
ifthenelse: if b then t else f fi 
, 
btrue: tt
, 
eq_int: (i =z j)
, 
bfalse: ff
, 
assert: ↑b
, 
false: False
, 
prop: ℙ
Lemmas referenced : 
qdiv_wf, 
qadd_wf, 
assert-qeq, 
equal_wf, 
rationals_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation, 
introduction, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
natural_numberEquality, 
applyEquality, 
because_Cache, 
independent_isectElimination, 
lambdaFormation, 
equalityTransitivity, 
equalitySymmetry, 
productElimination, 
independent_pairFormation, 
voidElimination, 
axiomEquality, 
isect_memberEquality
Latex:
\mforall{}[a,b:\mBbbQ{}].    (qavg(a;b)  \mmember{}  \mBbbQ{})
Date html generated:
2016_05_15-PM-11_05_59
Last ObjectModification:
2015_12_27-PM-07_45_25
Theory : rationals
Home
Index