Nuprl Lemma : qavg-eq-iff-7

[a,b,c:ℚ].  uiff(qavg(a;b) qavg(a;c) ∈ ℚ;b c ∈ ℚ)


Proof




Definitions occuring in Statement :  qavg: qavg(a;b) rationals: uiff: uiff(P;Q) uall: [x:A]. B[x] equal: t ∈ T
Definitions unfolded in proof :  iff: ⇐⇒ Q guard: {T} prop: true: True squash: T false: False assert: b bfalse: ff eq_int: (i =z j) btrue: tt ifthenelse: if then else fi  evalall: evalall(t) callbyvalueall: callbyvalueall qeq: qeq(r;s) implies:  Q not: ¬A subtype_rel: A ⊆B uimplies: supposing a and: P ∧ Q uiff: uiff(P;Q) member: t ∈ T uall: [x:A]. B[x] qavg: qavg(a;b)
Lemmas referenced :  qadd_inv_assoc_q qadd_ac_1_q iff_weakening_equal subtype_rel_self qmul-qdiv-cancel istype-universe true_wf squash_wf equal_wf int-subtype-rationals rationals_wf qmul_wf assert-qeq qadd_wf qdiv_wf
Rules used in proof :  independent_functionElimination universeEquality instantiate universeIsType minusEquality isectIsTypeImplies axiomEquality isect_memberEquality_alt independent_pairEquality imageMemberEquality imageElimination lambdaEquality_alt rename setElimination applyLambdaEquality productIsType dependent_set_memberEquality_alt sqequalBase baseClosed voidElimination productElimination equalitySymmetry equalityTransitivity lambdaFormation_alt independent_isectElimination because_Cache applyEquality natural_numberEquality thin isectElimination sqequalHypSubstitution extract_by_obid hypothesisEquality inhabitedIsType equalityIstype hypothesis independent_pairFormation cut introduction isect_memberFormation_alt computationStep sqequalTransitivity sqequalReflexivity sqequalRule sqequalSubstitution

Latex:
\mforall{}[a,b,c:\mBbbQ{}].    uiff(qavg(a;b)  =  qavg(a;c);b  =  c)



Date html generated: 2019_10_29-AM-07_45_06
Last ObjectModification: 2019_10_21-PM-09_09_37

Theory : rationals


Home Index