Nuprl Lemma : is-half-interval_wf

[I,J:ℚInterval].  (is-half-interval(I;J) ∈ 𝔹)


Proof




Definitions occuring in Statement :  is-half-interval: is-half-interval(I;J) rational-interval: Interval bool: 𝔹 uall: [x:A]. B[x] member: t ∈ T
Definitions unfolded in proof :  ifthenelse: if then else fi  band: p ∧b q bfalse: ff and: P ∧ Q uiff: uiff(P;Q) guard: {T} implies:  Q sq_type: SQType(T) uimplies: supposing a or: P ∨ Q all: x:A. B[x] rational-interval: Interval is-half-interval: is-half-interval(I;J) member: t ∈ T uall: [x:A]. B[x]
Lemmas referenced :  rational-interval_wf bfalse_wf qavg_wf assert-qeq btrue_wf band_wf eqtt_to_assert bool_subtype_base bool_wf subtype_base_sq bool_cases qeq_wf2 bor_wf
Rules used in proof :  universeIsType isectIsTypeImplies isect_memberEquality_alt inhabitedIsType axiomEquality independent_functionElimination equalitySymmetry equalityTransitivity independent_isectElimination cumulativity instantiate unionElimination dependent_functionElimination hypothesis isectElimination extract_by_obid hypothesisEquality independent_pairEquality thin productElimination sqequalHypSubstitution spreadEquality sqequalRule cut introduction isect_memberFormation_alt sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[I,J:\mBbbQ{}Interval].    (is-half-interval(I;J)  \mmember{}  \mBbbB{})



Date html generated: 2019_10_29-AM-07_50_34
Last ObjectModification: 2019_10_21-PM-00_49_30

Theory : rationals


Home Index