Nuprl Lemma : center-point-in-cube-interior

[k:ℕ]. ∀[a:ℚCube(k)].  rat-point-in-cube-interior(k;λj.qavg(fst((a j));snd((a j)));a) supposing ↑Inhabited(a)


Proof




Definitions occuring in Statement :  rat-point-in-cube-interior: rat-point-in-cube-interior(k;x;a) inhabited-rat-cube: Inhabited(c) rational-cube: Cube(k) qavg: qavg(a;b) nat: assert: b uimplies: supposing a uall: [x:A]. B[x] pi1: fst(t) pi2: snd(t) apply: a lambda: λx.A[x]
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a uiff: uiff(P;Q) and: P ∧ Q rat-point-in-cube-interior: rat-point-in-cube-interior(k;x;a) all: x:A. B[x] cand: c∧ B rational-cube: Cube(k) implies:  Q rational-interval: Interval pi1: fst(t) pi2: snd(t) rev_uimplies: rev_uimplies(P;Q) inhabited-rat-interval: Inhabited(I) prop: guard: {T} iff: ⇐⇒ Q nat:
Lemmas referenced :  assert-inhabited-rat-cube qle-qavg-iff-1 qle_wf assert-q_le-eq iff_weakening_equal istype-assert q_le_wf qavg-qle-iff-1 qless-qavg-iff-1 qavg-qless-iff-1 qless_wf int_seg_wf qle_witness qavg_wf qless_witness inhabited-rat-cube_wf rational-cube_wf istype-nat
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis productElimination independent_isectElimination lambdaFormation_alt sqequalRule applyEquality inhabitedIsType equalityIstype equalityTransitivity equalitySymmetry dependent_functionElimination independent_functionElimination because_Cache universeIsType independent_pairFormation natural_numberEquality setElimination rename lambdaEquality_alt independent_pairEquality functionIsTypeImplies isect_memberEquality_alt isectIsTypeImplies

Latex:
\mforall{}[k:\mBbbN{}].  \mforall{}[a:\mBbbQ{}Cube(k)].
    rat-point-in-cube-interior(k;\mlambda{}j.qavg(fst((a  j));snd((a  j)));a)  supposing  \muparrow{}Inhabited(a)



Date html generated: 2020_05_20-AM-09_18_55
Last ObjectModification: 2020_01_04-PM-10_30_18

Theory : rationals


Home Index