Nuprl Lemma : assert-is-half-cube

[k:ℕ]. ∀[h,c:ℚCube(k)].  uiff(↑is-half-cube(k;h;c);∀i:ℕk. (↑is-half-interval(h i;c i)))


Proof




Definitions occuring in Statement :  is-half-cube: is-half-cube(k;h;c) is-half-interval: is-half-interval(I;J) rational-cube: Cube(k) int_seg: {i..j-} nat: assert: b uiff: uiff(P;Q) uall: [x:A]. B[x] all: x:A. B[x] apply: a natural_number: $n
Definitions unfolded in proof :  guard: {T} rev_implies:  Q iff: ⇐⇒ Q so_apply: x[s] so_lambda: λ2x.t[x] implies:  Q rational-cube: Cube(k) nat: uall: [x:A]. B[x] all: x:A. B[x] member: t ∈ T uimplies: supposing a and: P ∧ Q uiff: uiff(P;Q) is-half-cube: is-half-cube(k;h;c)
Lemmas referenced :  istype-nat rational-cube_wf is-half-cube_wf bdd-all_wf assert-bdd-all istype-assert is-half-interval_wf assert_witness int_seg_wf
Rules used in proof :  isectIsTypeImplies isect_memberEquality_alt independent_pairEquality promote_hyp independent_isectElimination productElimination because_Cache functionIsType inhabitedIsType functionIsTypeImplies independent_functionElimination applyEquality dependent_functionElimination lambdaEquality_alt sqequalRule hypothesis hypothesisEquality rename setElimination natural_numberEquality thin isectElimination sqequalHypSubstitution extract_by_obid universeIsType lambdaFormation_alt introduction isect_memberFormation_alt independent_pairFormation cut sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[k:\mBbbN{}].  \mforall{}[h,c:\mBbbQ{}Cube(k)].    uiff(\muparrow{}is-half-cube(k;h;c);\mforall{}i:\mBbbN{}k.  (\muparrow{}is-half-interval(h  i;c  i)))



Date html generated: 2019_10_29-AM-07_50_59
Last ObjectModification: 2019_10_21-PM-01_14_18

Theory : rationals


Home Index