Nuprl Lemma : is-half-cube_wf
∀[k:ℕ]. ∀[h,c:ℚCube(k)]. (is-half-cube(k;h;c) ∈ 𝔹)
Proof
Definitions occuring in Statement :
is-half-cube: is-half-cube(k;h;c)
,
rational-cube: ℚCube(k)
,
nat: ℕ
,
bool: 𝔹
,
uall: ∀[x:A]. B[x]
,
member: t ∈ T
Definitions unfolded in proof :
so_apply: x[s]
,
nat: ℕ
,
rational-cube: ℚCube(k)
,
so_lambda: λ2x.t[x]
,
is-half-cube: is-half-cube(k;h;c)
,
member: t ∈ T
,
uall: ∀[x:A]. B[x]
Lemmas referenced :
istype-nat,
rational-cube_wf,
int_seg_wf,
is-half-interval_wf,
bdd-all_wf
Rules used in proof :
isectIsTypeImplies,
isect_memberEquality_alt,
inhabitedIsType,
equalitySymmetry,
equalityTransitivity,
axiomEquality,
rename,
setElimination,
natural_numberEquality,
universeIsType,
hypothesis,
applyEquality,
lambdaEquality_alt,
hypothesisEquality,
thin,
isectElimination,
sqequalHypSubstitution,
extract_by_obid,
sqequalRule,
cut,
introduction,
isect_memberFormation_alt,
sqequalReflexivity,
computationStep,
sqequalTransitivity,
sqequalSubstitution
Latex:
\mforall{}[k:\mBbbN{}]. \mforall{}[h,c:\mBbbQ{}Cube(k)]. (is-half-cube(k;h;c) \mmember{} \mBbbB{})
Date html generated:
2019_10_29-AM-07_50_53
Last ObjectModification:
2019_10_21-PM-00_52_10
Theory : rationals
Home
Index