Nuprl Lemma : half-cube-dimension

[k:ℕ]. ∀[c:{c:ℚCube(k)| ↑Inhabited(c)} ]. ∀[h:ℚCube(k)].  ((↑is-half-cube(k;h;c))  (dim(h) dim(c) ∈ ℤ))


Proof




Definitions occuring in Statement :  rat-cube-dimension: dim(c) inhabited-rat-cube: Inhabited(c) is-half-cube: is-half-cube(k;h;c) rational-cube: Cube(k) nat: assert: b uall: [x:A]. B[x] implies:  Q set: {x:A| B[x]}  int: equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T implies:  Q uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a rat-cube-dimension: dim(c) assert: b ifthenelse: if then else fi  btrue: tt iff: ⇐⇒ Q true: True rev_implies:  Q sq_type: SQType(T) all: x:A. B[x] guard: {T} rational-cube: Cube(k) nat: rational-interval: Interval rat-interval-dimension: dim(I) is-half-interval: is-half-interval(I;J) or: P ∨ Q squash: T prop: rev_uimplies: rev_uimplies(P;Q) subtype_rel: A ⊆B int_seg: {i..j-} lelt: i ≤ j < k le: A ≤ B bfalse: ff band: p ∧b q bool: 𝔹 unit: Unit it: exists: x:A. B[x] bnot: ¬bb false: False so_lambda: λ2x.t[x] so_apply: x[s] not: ¬A inhabited-rat-interval: Inhabited(I) qavg: qavg(a;b) qless: r < s grp_lt: a < b set_lt: a <b set_blt: a <b b infix_ap: y set_le: b pi2: snd(t) oset_of_ocmon: g↓oset dset_of_mon: g↓set grp_le: b pi1: fst(t) qadd_grp: <ℚ+> q_le: q_le(r;s) callbyvalueall: callbyvalueall evalall: evalall(t) bor: p ∨bq qpositive: qpositive(r) qsub: s qadd: s qmul: s lt_int: i <j qeq: qeq(r;s) eq_int: (i =z j)
Lemmas referenced :  assert-is-half-cube subtype_base_sq bool_wf bool_subtype_base iff_imp_equal_bool inhabited-rat-cube_wf btrue_wf istype-true istype-assert is-half-cube_wf int_seg_wf ifthenelse_wf squash_wf true_wf istype-universe q_less_wf qless-qavg-iff-1 qless_wf qavg_wf rationals_wf subtype_rel_self iff_weakening_equal assert-q_less-eq qavg-qless-iff-1 assert_wf bor_wf qeq_wf2 bool_cases eqtt_to_assert band_wf assert-qeq bfalse_wf equal_wf iff_transitivity iff_weakening_uiff assert_of_bor assert_of_band eqff_to_assert bool_cases_sqequal assert-bnot sum_wf istype-int istype-nat rat-interval-dimension_wf assert-inhabited-rat-cube qle_wf qmul_preserves_qle qdiv_wf qadd_wf qmul_wf int-subtype-rationals qmul-qdiv-cancel q_le_wf assert-q_le-eq qadd_preserves_qle qadd_ac_1_q qadd_inv_assoc_q q_distrib qmul_one_qrng qadd_comm_q qinverse_q mon_ident_q
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut lambdaFormation_alt setElimination thin rename extract_by_obid sqequalHypSubstitution isectElimination hypothesisEquality hypothesis productElimination independent_isectElimination instantiate cumulativity sqequalRule independent_pairFormation natural_numberEquality inhabitedIsType dependent_functionElimination because_Cache equalityTransitivity equalitySymmetry independent_functionElimination lambdaEquality_alt axiomEquality functionIsTypeImplies isect_memberEquality_alt isectIsTypeImplies setIsType applyEquality equalityIstype universeIsType unionElimination imageElimination universeEquality imageMemberEquality baseClosed promote_hyp intEquality unionEquality productEquality productIsType unionIsType inlFormation_alt inrFormation_alt equalityElimination dependent_pairFormation_alt voidElimination functionIsType sqequalBase minusEquality

Latex:
\mforall{}[k:\mBbbN{}].  \mforall{}[c:\{c:\mBbbQ{}Cube(k)|  \muparrow{}Inhabited(c)\}  ].  \mforall{}[h:\mBbbQ{}Cube(k)].
    ((\muparrow{}is-half-cube(k;h;c))  {}\mRightarrow{}  (dim(h)  =  dim(c)))



Date html generated: 2020_05_20-AM-09_19_49
Last ObjectModification: 2019_11_02-PM-07_36_37

Theory : rationals


Home Index