Step
*
of Lemma
half-cube-dimension
No Annotations
∀[k:ℕ]. ∀[c:{c:ℚCube(k)| ↑Inhabited(c)} ]. ∀[h:ℚCube(k)]. ((↑is-half-cube(k;h;c))
⇒ (dim(h) = dim(c) ∈ ℤ))
BY
{ (Auto
THEN DVar `c'
THEN (RWO "assert-is-half-cube" (-1) THENA Auto)
THEN Unfold `rat-cube-dimension` 0
THEN (Subst' Inhabited(c) = tt 0 THENA Auto)
THEN Reduce 0
THEN Assert ⌜∀i:ℕk. (dim(h i) = dim(c i) ∈ ℤ)⌝⋅) }
1
.....assertion.....
1. k : ℕ
2. c : ℚCube(k)
3. ↑Inhabited(c)
4. h : ℚCube(k)
5. ∀i:ℕk. (↑is-half-interval(h i;c i))
⊢ ∀i:ℕk. (dim(h i) = dim(c i) ∈ ℤ)
2
1. k : ℕ
2. c : ℚCube(k)
3. ↑Inhabited(c)
4. h : ℚCube(k)
5. ∀i:ℕk. (↑is-half-interval(h i;c i))
6. ∀i:ℕk. (dim(h i) = dim(c i) ∈ ℤ)
⊢ if Inhabited(h) then Σ(dim(h i) | i < k) else -1 fi = Σ(dim(c i) | i < k) ∈ ℤ
Latex:
Latex:
No Annotations
\mforall{}[k:\mBbbN{}]. \mforall{}[c:\{c:\mBbbQ{}Cube(k)| \muparrow{}Inhabited(c)\} ]. \mforall{}[h:\mBbbQ{}Cube(k)].
((\muparrow{}is-half-cube(k;h;c)) {}\mRightarrow{} (dim(h) = dim(c)))
By
Latex:
(Auto
THEN DVar `c'
THEN (RWO "assert-is-half-cube" (-1) THENA Auto)
THEN Unfold `rat-cube-dimension` 0
THEN (Subst' Inhabited(c) = tt 0 THENA Auto)
THEN Reduce 0
THEN Assert \mkleeneopen{}\mforall{}i:\mBbbN{}k. (dim(h i) = dim(c i))\mkleeneclose{}\mcdot{})
Home
Index