Nuprl Lemma : qavg-same

[a:ℚ]. (qavg(a;a) a ∈ ℚ)


Proof




Definitions occuring in Statement :  qavg: qavg(a;b) rationals: uall: [x:A]. B[x] equal: t ∈ T
Definitions unfolded in proof :  rev_implies:  Q iff: ⇐⇒ Q guard: {T} qadd: s prop: squash: T false: False assert: b bfalse: ff eq_int: (i =z j) btrue: tt ifthenelse: if then else fi  evalall: evalall(t) callbyvalueall: callbyvalueall qeq: qeq(r;s) implies:  Q not: ¬A true: True rev_uimplies: rev_uimplies(P;Q) and: P ∧ Q uiff: uiff(P;Q) uimplies: supposing a subtype_rel: A ⊆B member: t ∈ T uall: [x:A]. B[x] qavg: qavg(a;b)
Lemmas referenced :  iff_weakening_equal subtype_rel_self qmul-qdiv-cancel q_distrib qmul_ident equal-wf-T-base not_wf istype-universe true_wf squash_wf equal_wf qmul_wf assert-qeq int-subtype-rationals rationals_wf qadd_wf qdiv_wf qmul-preserves-eq
Rules used in proof :  independent_functionElimination imageMemberEquality universeEquality instantiate imageElimination lambdaEquality_alt sqequalBase baseClosed inhabitedIsType equalityIstype voidElimination independent_pairFormation equalitySymmetry equalityTransitivity lambdaFormation_alt universeIsType productElimination independent_isectElimination applyEquality natural_numberEquality hypothesis because_Cache hypothesisEquality thin isectElimination sqequalHypSubstitution extract_by_obid introduction cut isect_memberFormation_alt computationStep sqequalTransitivity sqequalReflexivity sqequalRule sqequalSubstitution

Latex:
\mforall{}[a:\mBbbQ{}].  (qavg(a;a)  =  a)



Date html generated: 2019_10_29-AM-07_44_25
Last ObjectModification: 2019_10_21-PM-06_47_17

Theory : rationals


Home Index