Nuprl Lemma : immediate-rc-face-implies
∀k:ℕ. ∀f,c:ℚCube(k).
  (0 < dim(c)
  
⇒ immediate-rc-face(k;f;c)
  
⇒ (∃i:ℕk
       ((dim(c i) = 1 ∈ ℤ)
       ∧ (∀j:ℕk. ((¬(j = i ∈ ℤ)) 
⇒ ((f j) = (c j) ∈ ℚInterval)))
       ∧ (((f i) = [fst((c i))] ∈ ℚInterval) ∨ ((f i) = [snd((c i))] ∈ ℚInterval)))))
Proof
Definitions occuring in Statement : 
immediate-rc-face: immediate-rc-face(k;f;c)
, 
rat-cube-dimension: dim(c)
, 
rational-cube: ℚCube(k)
, 
rat-interval-dimension: dim(I)
, 
rat-point-interval: [a]
, 
rational-interval: ℚInterval
, 
int_seg: {i..j-}
, 
nat: ℕ
, 
less_than: a < b
, 
pi1: fst(t)
, 
pi2: snd(t)
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
or: P ∨ Q
, 
and: P ∧ Q
, 
apply: f a
, 
natural_number: $n
, 
int: ℤ
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
rat-cube-dimension: dim(c)
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
or: P ∨ Q
, 
uimplies: b supposing a
, 
sq_type: SQType(T)
, 
guard: {T}
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
ifthenelse: if b then t else f fi 
, 
btrue: tt
, 
immediate-rc-face: immediate-rc-face(k;f;c)
, 
bfalse: ff
, 
less_than: a < b
, 
squash: ↓T
, 
less_than': less_than'(a;b)
, 
false: False
, 
prop: ℙ
, 
subtype_rel: A ⊆r B
, 
int_seg: {i..j-}
, 
rat-cube-face: c ≤ d
, 
rational-cube: ℚCube(k)
, 
rational-interval: ℚInterval
, 
rat-interval-dimension: dim(I)
, 
rat-interval-face: I ≤ J
, 
pi1: fst(t)
, 
pi2: snd(t)
, 
rat-point-interval: [a]
, 
inhabited-rat-interval: Inhabited(I)
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
top: Top
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
iff: P 
⇐⇒ Q
, 
cand: A c∧ B
, 
exists: ∃x:A. B[x]
, 
bnot: ¬bb
, 
assert: ↑b
, 
not: ¬A
, 
rev_implies: P 
⇐ Q
, 
true: True
, 
nat: ℕ
, 
decidable: Dec(P)
, 
ge: i ≥ j 
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
lelt: i ≤ j < k
, 
le: A ≤ B
Lemmas referenced : 
inhabited-rat-cube_wf, 
bool_cases, 
subtype_base_sq, 
bool_wf, 
bool_subtype_base, 
eqtt_to_assert, 
assert-inhabited-rat-cube, 
eqff_to_assert, 
assert_of_bnot, 
immediate-rc-face_wf, 
istype-less_than, 
rat-cube-dimension_wf, 
rational-cube_wf, 
istype-nat, 
pi2_wf, 
rationals_wf, 
pi1_wf_top, 
istype-void, 
equal_wf, 
rational-interval_wf, 
q_less_wf, 
assert-q_less-eq, 
iff_weakening_equal, 
qle_wf, 
bool_cases_sqequal, 
assert-bnot, 
qless_wf, 
qless_complement_qorder, 
qle_antisymmetry, 
int_subtype_base, 
or_wf, 
equal-wf-base, 
subtype_rel_self, 
assert-q_le-eq, 
istype-assert, 
q_le_wf, 
int_seg_wf, 
decidable__exists_int_seg, 
rat-interval-dimension_wf, 
set_subtype_base, 
lelt_wf, 
rat-point-interval_wf, 
decidable__cand, 
decidable__equal_int, 
decidable__or, 
decidable__equal_rational-interval, 
subtype_rel_product, 
top_wf, 
subtract_wf, 
nat_properties, 
full-omega-unsat, 
intformeq_wf, 
itermVar_wf, 
itermSubtract_wf, 
itermConstant_wf, 
istype-int, 
int_formula_prop_eq_lemma, 
int_term_value_var_lemma, 
int_term_value_subtract_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_wf, 
int_seg_properties, 
subtract-is-int-iff, 
intformand_wf, 
intformless_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_less_lemma, 
false_wf, 
rat-interval-dimension-single, 
squash_wf, 
true_wf, 
istype-universe, 
iff_imp_equal_bool, 
btrue_wf, 
istype-true, 
decidable__lt, 
sum_wf, 
decidable__le, 
intformnot_wf, 
intformle_wf, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
istype-le, 
isolate_summand2, 
int_seg_subtype_nat, 
istype-false, 
ifthenelse_wf, 
eq_int_wf, 
less_than_wf, 
add_functionality_wrt_eq, 
assert_of_eq_int, 
neg_assert_of_eq_int, 
itermAdd_wf, 
int_term_value_add_lemma, 
sum_le, 
le_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
sqequalHypSubstitution, 
cut, 
introduction, 
extract_by_obid, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
dependent_functionElimination, 
because_Cache, 
unionElimination, 
instantiate, 
cumulativity, 
independent_isectElimination, 
equalityTransitivity, 
equalitySymmetry, 
independent_functionElimination, 
productElimination, 
sqequalRule, 
imageElimination, 
voidElimination, 
universeIsType, 
natural_numberEquality, 
applyEquality, 
lambdaEquality_alt, 
setElimination, 
rename, 
inhabitedIsType, 
applyLambdaEquality, 
independent_pairEquality, 
isect_memberEquality_alt, 
promote_hyp, 
hyp_replacement, 
equalityElimination, 
inrFormation_alt, 
independent_pairFormation, 
inlFormation_alt, 
equalityIstype, 
dependent_pairFormation_alt, 
productIsType, 
baseClosed, 
sqequalBase, 
intEquality, 
functionEquality, 
productEquality, 
unionIsType, 
unionEquality, 
functionExtensionality, 
minusEquality, 
addEquality, 
approximateComputation, 
int_eqEquality, 
functionIsType, 
pointwiseFunctionality, 
baseApply, 
closedConclusion, 
imageMemberEquality, 
universeEquality, 
dependent_set_memberEquality_alt
Latex:
\mforall{}k:\mBbbN{}.  \mforall{}f,c:\mBbbQ{}Cube(k).
    (0  <  dim(c)
    {}\mRightarrow{}  immediate-rc-face(k;f;c)
    {}\mRightarrow{}  (\mexists{}i:\mBbbN{}k
              ((dim(c  i)  =  1)
              \mwedge{}  (\mforall{}j:\mBbbN{}k.  ((\mneg{}(j  =  i))  {}\mRightarrow{}  ((f  j)  =  (c  j))))
              \mwedge{}  (((f  i)  =  [fst((c  i))])  \mvee{}  ((f  i)  =  [snd((c  i))])))))
Date html generated:
2020_05_20-AM-09_20_06
Last ObjectModification:
2019_11_01-PM-02_51_10
Theory : rationals
Home
Index