Nuprl Lemma : immediate-rc-face-implies

k:ℕ. ∀f,c:ℚCube(k).
  (0 < dim(c)
   immediate-rc-face(k;f;c)
   (∃i:ℕk
       ((dim(c i) 1 ∈ ℤ)
       ∧ (∀j:ℕk. ((¬(j i ∈ ℤ))  ((f j) (c j) ∈ ℚInterval)))
       ∧ (((f i) [fst((c i))] ∈ ℚInterval) ∨ ((f i) [snd((c i))] ∈ ℚInterval)))))


Proof




Definitions occuring in Statement :  immediate-rc-face: immediate-rc-face(k;f;c) rat-cube-dimension: dim(c) rational-cube: Cube(k) rat-interval-dimension: dim(I) rat-point-interval: [a] rational-interval: Interval int_seg: {i..j-} nat: less_than: a < b pi1: fst(t) pi2: snd(t) all: x:A. B[x] exists: x:A. B[x] not: ¬A implies:  Q or: P ∨ Q and: P ∧ Q apply: a natural_number: $n int: equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q rat-cube-dimension: dim(c) member: t ∈ T uall: [x:A]. B[x] or: P ∨ Q uimplies: supposing a sq_type: SQType(T) guard: {T} uiff: uiff(P;Q) and: P ∧ Q ifthenelse: if then else fi  btrue: tt immediate-rc-face: immediate-rc-face(k;f;c) bfalse: ff less_than: a < b squash: T less_than': less_than'(a;b) false: False prop: subtype_rel: A ⊆B int_seg: {i..j-} rat-cube-face: c ≤ d rational-cube: Cube(k) rational-interval: Interval rat-interval-dimension: dim(I) rat-interval-face: I ≤ J pi1: fst(t) pi2: snd(t) rat-point-interval: [a] inhabited-rat-interval: Inhabited(I) so_lambda: λ2x.t[x] so_apply: x[s] top: Top bool: 𝔹 unit: Unit it: iff: ⇐⇒ Q cand: c∧ B exists: x:A. B[x] bnot: ¬bb assert: b not: ¬A rev_implies:  Q true: True nat: decidable: Dec(P) ge: i ≥  satisfiable_int_formula: satisfiable_int_formula(fmla) lelt: i ≤ j < k le: A ≤ B
Lemmas referenced :  inhabited-rat-cube_wf bool_cases subtype_base_sq bool_wf bool_subtype_base eqtt_to_assert assert-inhabited-rat-cube eqff_to_assert assert_of_bnot immediate-rc-face_wf istype-less_than rat-cube-dimension_wf rational-cube_wf istype-nat pi2_wf rationals_wf pi1_wf_top istype-void equal_wf rational-interval_wf q_less_wf assert-q_less-eq iff_weakening_equal qle_wf bool_cases_sqequal assert-bnot qless_wf qless_complement_qorder qle_antisymmetry int_subtype_base or_wf equal-wf-base subtype_rel_self assert-q_le-eq istype-assert q_le_wf int_seg_wf decidable__exists_int_seg rat-interval-dimension_wf set_subtype_base lelt_wf rat-point-interval_wf decidable__cand decidable__equal_int decidable__or decidable__equal_rational-interval subtype_rel_product top_wf subtract_wf nat_properties full-omega-unsat intformeq_wf itermVar_wf itermSubtract_wf itermConstant_wf istype-int int_formula_prop_eq_lemma int_term_value_var_lemma int_term_value_subtract_lemma int_term_value_constant_lemma int_formula_prop_wf int_seg_properties subtract-is-int-iff intformand_wf intformless_wf int_formula_prop_and_lemma int_formula_prop_less_lemma false_wf rat-interval-dimension-single squash_wf true_wf istype-universe iff_imp_equal_bool btrue_wf istype-true decidable__lt sum_wf decidable__le intformnot_wf intformle_wf int_formula_prop_not_lemma int_formula_prop_le_lemma istype-le isolate_summand2 int_seg_subtype_nat istype-false ifthenelse_wf eq_int_wf less_than_wf add_functionality_wrt_eq assert_of_eq_int neg_assert_of_eq_int itermAdd_wf int_term_value_add_lemma sum_le le_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt sqequalHypSubstitution cut introduction extract_by_obid isectElimination thin hypothesisEquality hypothesis dependent_functionElimination because_Cache unionElimination instantiate cumulativity independent_isectElimination equalityTransitivity equalitySymmetry independent_functionElimination productElimination sqequalRule imageElimination voidElimination universeIsType natural_numberEquality applyEquality lambdaEquality_alt setElimination rename inhabitedIsType applyLambdaEquality independent_pairEquality isect_memberEquality_alt promote_hyp hyp_replacement equalityElimination inrFormation_alt independent_pairFormation inlFormation_alt equalityIstype dependent_pairFormation_alt productIsType baseClosed sqequalBase intEquality functionEquality productEquality unionIsType unionEquality functionExtensionality minusEquality addEquality approximateComputation int_eqEquality functionIsType pointwiseFunctionality baseApply closedConclusion imageMemberEquality universeEquality dependent_set_memberEquality_alt

Latex:
\mforall{}k:\mBbbN{}.  \mforall{}f,c:\mBbbQ{}Cube(k).
    (0  <  dim(c)
    {}\mRightarrow{}  immediate-rc-face(k;f;c)
    {}\mRightarrow{}  (\mexists{}i:\mBbbN{}k
              ((dim(c  i)  =  1)
              \mwedge{}  (\mforall{}j:\mBbbN{}k.  ((\mneg{}(j  =  i))  {}\mRightarrow{}  ((f  j)  =  (c  j))))
              \mwedge{}  (((f  i)  =  [fst((c  i))])  \mvee{}  ((f  i)  =  [snd((c  i))])))))



Date html generated: 2020_05_20-AM-09_20_06
Last ObjectModification: 2019_11_01-PM-02_51_10

Theory : rationals


Home Index