Nuprl Lemma : immediate-rc-face_wf
∀[k:ℕ]. ∀[f,c:ℚCube(k)].  (immediate-rc-face(k;f;c) ∈ ℙ)
Proof
Definitions occuring in Statement : 
immediate-rc-face: immediate-rc-face(k;f;c)
, 
rational-cube: ℚCube(k)
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
member: t ∈ T
Definitions unfolded in proof : 
uimplies: b supposing a
, 
so_apply: x[s]
, 
nat: ℕ
, 
so_lambda: λ2x.t[x]
, 
int_seg: {i..j-}
, 
subtype_rel: A ⊆r B
, 
and: P ∧ Q
, 
prop: ℙ
, 
immediate-rc-face: immediate-rc-face(k;f;c)
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
istype-nat, 
rational-cube_wf, 
subtract_wf, 
int_subtype_base, 
istype-int, 
lelt_wf, 
set_subtype_base, 
rat-cube-dimension_wf, 
equal-wf-base, 
rat-cube-face_wf
Rules used in proof : 
universeIsType, 
isectIsTypeImplies, 
isect_memberEquality_alt, 
axiomEquality, 
equalitySymmetry, 
equalityTransitivity, 
inhabitedIsType, 
independent_isectElimination, 
rename, 
setElimination, 
addEquality, 
natural_numberEquality, 
lambdaEquality_alt, 
applyEquality, 
intEquality, 
hypothesis, 
hypothesisEquality, 
thin, 
isectElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
productEquality, 
sqequalRule, 
cut, 
introduction, 
isect_memberFormation_alt, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}[k:\mBbbN{}].  \mforall{}[f,c:\mBbbQ{}Cube(k)].    (immediate-rc-face(k;f;c)  \mmember{}  \mBbbP{})
Date html generated:
2019_10_29-AM-07_53_48
Last ObjectModification:
2019_10_17-PM-02_57_10
Theory : rationals
Home
Index