Step
*
of Lemma
immediate-rc-face-implies
No Annotations
∀k:ℕ. ∀f,c:ℚCube(k).
(0 < dim(c)
⇒ immediate-rc-face(k;f;c)
⇒ (∃i:ℕk
((dim(c i) = 1 ∈ ℤ)
∧ (∀j:ℕk. ((¬(j = i ∈ ℤ))
⇒ ((f j) = (c j) ∈ ℚInterval)))
∧ (((f i) = [fst((c i))] ∈ ℚInterval) ∨ ((f i) = [snd((c i))] ∈ ℚInterval)))))
BY
{ (Auto
THEN Unfold `rat-cube-dimension` -2
THEN SplitOnHypITE -2
THEN Auto
THEN DupHyp (-1)
THEN (RWO "assert-inhabited-rat-cube" (-1) THENA Auto)
THEN D -3) }
1
1. k : ℕ
2. f : ℚCube(k)
3. c : ℚCube(k)
4. 0 < Σ(dim(c i) | i < k)
5. f ≤ c
6. dim(f) = (dim(c) - 1) ∈ ℤ
7. ↑Inhabited(c)
8. ∀i:ℕk. (↑Inhabited(c i))
⊢ ∃i:ℕk
((dim(c i) = 1 ∈ ℤ)
∧ (∀j:ℕk. ((¬(j = i ∈ ℤ))
⇒ ((f j) = (c j) ∈ ℚInterval)))
∧ (((f i) = [fst((c i))] ∈ ℚInterval) ∨ ((f i) = [snd((c i))] ∈ ℚInterval)))
Latex:
Latex:
No Annotations
\mforall{}k:\mBbbN{}. \mforall{}f,c:\mBbbQ{}Cube(k).
(0 < dim(c)
{}\mRightarrow{} immediate-rc-face(k;f;c)
{}\mRightarrow{} (\mexists{}i:\mBbbN{}k
((dim(c i) = 1)
\mwedge{} (\mforall{}j:\mBbbN{}k. ((\mneg{}(j = i)) {}\mRightarrow{} ((f j) = (c j))))
\mwedge{} (((f i) = [fst((c i))]) \mvee{} ((f i) = [snd((c i))])))))
By
Latex:
(Auto
THEN Unfold `rat-cube-dimension` -2
THEN SplitOnHypITE -2
THEN Auto
THEN DupHyp (-1)
THEN (RWO "assert-inhabited-rat-cube" (-1) THENA Auto)
THEN D -3)
Home
Index