Step * 1 1 1 1 3 1 1 4 of Lemma extend-half-cube-face


1. : ℕ
2. : ℚCube(k)
3. : ℚCube(k)
4. : ℚCube(k)
5. ∀i:ℕk. (↑Inhabited(a i))
6. 0 < dim(b)
7. ∀i:ℕk. i ≤ i
8. ∀i:ℕk. (↑is-half-interval(b i;c i))
9. dim(a) (dim(b) 1) ∈ ℤ
10. : ℕk
11. dim(c i) 1 ∈ ℤ
12. ∀j:ℕk. ((¬(j i ∈ ℤ))  ((a j) (b j) ∈ ℚInterval))
13. (a i) [fst((b i))] ∈ ℚInterval
14. (fst((b i))) qavg(fst((c i));snd((c i))) ∈ ℚ
15. (snd((b i))) (snd((c i))) ∈ ℚ
16. λj.if (j =z i) then <fst((c i)), qavg(fst((c i));snd((c i)))> else fi  ∈ ℚCube(k)
17. ∀i@0:ℕk. i@0 ≤ j.if (j =z i) then <fst((c i)), qavg(fst((c i));snd((c i)))> else fi i@0
18. ↑is-half-cube(k;λj.if (j =z i) then <fst((c i)), qavg(fst((c i));snd((c i)))> else fi ;c)
19. ¬((λj.if (j =z i) then <fst((c i)), qavg(fst((c i));snd((c i)))> else fi b ∈ ℚCube(k))
20. : ℚCube(k)
21. ∀i:ℕk. i ≤ i
22. ↑is-half-cube(k;y;c)
23. ¬(y b ∈ ℚCube(k))
⊢ j.if (j =z i) then <fst((c i)), qavg(fst((c i));snd((c i)))> else fi ) ∈ ℚCube(k)
BY
((RWO  "assert-is-half-cube" (-2) THENA Auto) THEN Assert ⌜∀x:ℕk. (x ≠  ((y x) (b x) ∈ ℚInterval))⌝⋅}

1
.....assertion..... 
1. : ℕ
2. : ℚCube(k)
3. : ℚCube(k)
4. : ℚCube(k)
5. ∀i:ℕk. (↑Inhabited(a i))
6. 0 < dim(b)
7. ∀i:ℕk. i ≤ i
8. ∀i:ℕk. (↑is-half-interval(b i;c i))
9. dim(a) (dim(b) 1) ∈ ℤ
10. : ℕk
11. dim(c i) 1 ∈ ℤ
12. ∀j:ℕk. ((¬(j i ∈ ℤ))  ((a j) (b j) ∈ ℚInterval))
13. (a i) [fst((b i))] ∈ ℚInterval
14. (fst((b i))) qavg(fst((c i));snd((c i))) ∈ ℚ
15. (snd((b i))) (snd((c i))) ∈ ℚ
16. λj.if (j =z i) then <fst((c i)), qavg(fst((c i));snd((c i)))> else fi  ∈ ℚCube(k)
17. ∀i@0:ℕk. i@0 ≤ j.if (j =z i) then <fst((c i)), qavg(fst((c i));snd((c i)))> else fi i@0
18. ↑is-half-cube(k;λj.if (j =z i) then <fst((c i)), qavg(fst((c i));snd((c i)))> else fi ;c)
19. ¬((λj.if (j =z i) then <fst((c i)), qavg(fst((c i));snd((c i)))> else fi b ∈ ℚCube(k))
20. : ℚCube(k)
21. ∀i:ℕk. i ≤ i
22. ∀i:ℕk. (↑is-half-interval(y i;c i))
23. ¬(y b ∈ ℚCube(k))
⊢ ∀x:ℕk. (x ≠  ((y x) (b x) ∈ ℚInterval))

2
1. : ℕ
2. : ℚCube(k)
3. : ℚCube(k)
4. : ℚCube(k)
5. ∀i:ℕk. (↑Inhabited(a i))
6. 0 < dim(b)
7. ∀i:ℕk. i ≤ i
8. ∀i:ℕk. (↑is-half-interval(b i;c i))
9. dim(a) (dim(b) 1) ∈ ℤ
10. : ℕk
11. dim(c i) 1 ∈ ℤ
12. ∀j:ℕk. ((¬(j i ∈ ℤ))  ((a j) (b j) ∈ ℚInterval))
13. (a i) [fst((b i))] ∈ ℚInterval
14. (fst((b i))) qavg(fst((c i));snd((c i))) ∈ ℚ
15. (snd((b i))) (snd((c i))) ∈ ℚ
16. λj.if (j =z i) then <fst((c i)), qavg(fst((c i));snd((c i)))> else fi  ∈ ℚCube(k)
17. ∀i@0:ℕk. i@0 ≤ j.if (j =z i) then <fst((c i)), qavg(fst((c i));snd((c i)))> else fi i@0
18. ↑is-half-cube(k;λj.if (j =z i) then <fst((c i)), qavg(fst((c i));snd((c i)))> else fi ;c)
19. ¬((λj.if (j =z i) then <fst((c i)), qavg(fst((c i));snd((c i)))> else fi b ∈ ℚCube(k))
20. : ℚCube(k)
21. ∀i:ℕk. i ≤ i
22. ∀i:ℕk. (↑is-half-interval(y i;c i))
23. ¬(y b ∈ ℚCube(k))
24. ∀x:ℕk. (x ≠  ((y x) (b x) ∈ ℚInterval))
⊢ j.if (j =z i) then <fst((c i)), qavg(fst((c i));snd((c i)))> else fi ) ∈ ℚCube(k)


Latex:


Latex:

1.  k  :  \mBbbN{}
2.  a  :  \mBbbQ{}Cube(k)
3.  b  :  \mBbbQ{}Cube(k)
4.  c  :  \mBbbQ{}Cube(k)
5.  \mforall{}i:\mBbbN{}k.  (\muparrow{}Inhabited(a  i))
6.  0  <  dim(b)
7.  \mforall{}i:\mBbbN{}k.  a  i  \mleq{}  b  i
8.  \mforall{}i:\mBbbN{}k.  (\muparrow{}is-half-interval(b  i;c  i))
9.  dim(a)  =  (dim(b)  -  1)
10.  i  :  \mBbbN{}k
11.  dim(c  i)  =  1
12.  \mforall{}j:\mBbbN{}k.  ((\mneg{}(j  =  i))  {}\mRightarrow{}  ((a  j)  =  (b  j)))
13.  (a  i)  =  [fst((b  i))]
14.  (fst((b  i)))  =  qavg(fst((c  i));snd((c  i)))
15.  (snd((b  i)))  =  (snd((c  i)))
16.  \mlambda{}j.if  (j  =\msubz{}  i)  then  <fst((c  i)),  qavg(fst((c  i));snd((c  i)))>  else  b  j  fi    \mmember{}  \mBbbQ{}Cube(k)
17.  \mforall{}i@0:\mBbbN{}k
            a  i@0  \mleq{}  (\mlambda{}j.if  (j  =\msubz{}  i)  then  <fst((c  i)),  qavg(fst((c  i));snd((c  i)))>  else  b  j  fi  )  i@0
18.  \muparrow{}is-half-cube(k;\mlambda{}j.if  (j  =\msubz{}  i)  then  <fst((c  i)),  qavg(fst((c  i));snd((c  i)))>  else  b  j  fi  ;c)
19.  \mneg{}((\mlambda{}j.if  (j  =\msubz{}  i)  then  <fst((c  i)),  qavg(fst((c  i));snd((c  i)))>  else  b  j  fi  )  =  b)
20.  y  :  \mBbbQ{}Cube(k)
21.  \mforall{}i:\mBbbN{}k.  a  i  \mleq{}  y  i
22.  \muparrow{}is-half-cube(k;y;c)
23.  \mneg{}(y  =  b)
\mvdash{}  y  =  (\mlambda{}j.if  (j  =\msubz{}  i)  then  <fst((c  i)),  qavg(fst((c  i));snd((c  i)))>  else  b  j  fi  )


By


Latex:
((RWO    "assert-is-half-cube"  (-2)  THENA  Auto)  THEN  Assert  \mkleeneopen{}\mforall{}x:\mBbbN{}k.  (x  \mneq{}  i  {}\mRightarrow{}  ((y  x)  =  (b  x)))\mkleeneclose{}\mcdot{})




Home Index