Step
*
1
of Lemma
proportional-round-property
1. k : ℕ+
2. l : ℕ+
3. p : ℤ
4. q : ℤ
5. 0 < q
6. ¬(q = 0 ∈ ℚ)
7. ¬↑qeq(q;0)
8. 0 < (k * p * 1) + (((-1) * l * (((p * 1) * k) ÷ q * l)) * q)
9. 0 < q
⊢ (k * p * 1) + (((-1) * l * (((p * 1) * k) ÷ q * l)) * q) < q * l
BY
{ (MoveToConcl (-3)
THEN (RW IntNormC 0 THENA Auto)
THEN (GenConclTerm ⌜k * p⌝⋅ THENA Auto)
THEN (InstLemma `div_rem_sum` [⌜v⌝;⌜l * q⌝]⋅ THENA Auto)
THEN (Subst ⌜l * q * (v ÷ l * q) ~ v - v rem l * q⌝ 0⋅ THENA Auto')
THEN (RW IntNormC 0 THENA Auto)) }
1
1. k : ℕ+
2. l : ℕ+
3. p : ℤ
4. q : ℤ
5. 0 < q
6. ¬(q = 0 ∈ ℚ)
7. 0 < (k * p * 1) + (((-1) * l * (((p * 1) * k) ÷ q * l)) * q)
8. 0 < q
9. v : ℤ@i
10. (k * p) = v ∈ ℤ
11. v = (((v ÷ l * q) * l * q) + (v rem l * q)) ∈ ℤ
⊢ (¬↑qeq(q;0))
⇒ v rem l * q < l * q
Latex:
Latex:
1. k : \mBbbN{}\msupplus{}
2. l : \mBbbN{}\msupplus{}
3. p : \mBbbZ{}
4. q : \mBbbZ{}
5. 0 < q
6. \mneg{}(q = 0)
7. \mneg{}\muparrow{}qeq(q;0)
8. 0 < (k * p * 1) + (((-1) * l * (((p * 1) * k) \mdiv{} q * l)) * q)
9. 0 < q
\mvdash{} (k * p * 1) + (((-1) * l * (((p * 1) * k) \mdiv{} q * l)) * q) < q * l
By
Latex:
(MoveToConcl (-3)
THEN (RW IntNormC 0 THENA Auto)
THEN (GenConclTerm \mkleeneopen{}k * p\mkleeneclose{}\mcdot{} THENA Auto)
THEN (InstLemma `div\_rem\_sum` [\mkleeneopen{}v\mkleeneclose{};\mkleeneopen{}l * q\mkleeneclose{}]\mcdot{} THENA Auto)
THEN (Subst \mkleeneopen{}l * q * (v \mdiv{} l * q) \msim{} v - v rem l * q\mkleeneclose{} 0\mcdot{} THENA Auto')
THEN (RW IntNormC 0 THENA Auto))
Home
Index