Nuprl Lemma : proportional-round-property
∀[k,l:ℕ+]. ∀[r:ℚ].  |(k * r) - l * proportional-round(r;k;l)| < l
Proof
Definitions occuring in Statement : 
qabs: |r|
, 
qless: r < s
, 
qsub: r - s
, 
qmul: r * s
, 
proportional-round: proportional-round(r;k;l)
, 
rationals: ℚ
, 
nat_plus: ℕ+
, 
uall: ∀[x:A]. B[x]
, 
multiply: n * m
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
subtype_rel: A ⊆r B
, 
nat_plus: ℕ+
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
uimplies: b supposing a
, 
prop: ℙ
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
rev_implies: P 
⇐ Q
, 
implies: P 
⇒ Q
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
cand: A c∧ B
, 
not: ¬A
, 
qdiv: (r/s)
, 
proportional-round: proportional-round(r;k;l)
, 
qmul: r * s
, 
qsub: r - s
, 
qabs: |r|
, 
q_less: q_less(r;s)
, 
ifthenelse: if b then t else f fi 
, 
btrue: tt
, 
qpositive: qpositive(r)
, 
qinv: 1/r
, 
qadd: r + s
, 
callbyvalueall: callbyvalueall, 
evalall: evalall(t)
, 
has-value: (a)↓
, 
has-valueall: has-valueall(a)
, 
bfalse: ff
, 
int_nzero: ℤ-o
, 
nequal: a ≠ b ∈ T 
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
false: False
, 
top: Top
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
uiff: uiff(P;Q)
, 
band: p ∧b q
, 
or: P ∨ Q
, 
sq_type: SQType(T)
, 
bnot: ¬bb
, 
assert: ↑b
, 
less_than: a < b
, 
squash: ↓T
, 
bor: p ∨bq
, 
rev_uimplies: rev_uimplies(P;Q)
, 
true: True
, 
decidable: Dec(P)
, 
subtract: n - m
, 
le: A ≤ B
, 
nat: ℕ
, 
ge: i ≥ j 
, 
gt: i > j
, 
int_lower: {...i}
Lemmas referenced : 
assert-q_less-eq, 
qabs_wf, 
qsub_wf, 
qmul_wf, 
proportional-round_wf, 
subtype_rel_set, 
int-subtype-rationals, 
iff_weakening_equal, 
q-elim, 
nat_plus_properties, 
iff_weakening_uiff, 
assert_wf, 
qeq_wf2, 
equal-wf-base, 
rationals_wf, 
int_subtype_base, 
assert-qeq, 
valueall-type-has-valueall, 
int-valueall-type, 
evalall-reduce, 
product-valueall-type, 
nat_plus_wf, 
set-valueall-type, 
less_than_wf, 
mul_nzero, 
full-omega-unsat, 
intformand_wf, 
intformeq_wf, 
itermVar_wf, 
itermConstant_wf, 
intformless_wf, 
istype-int, 
int_formula_prop_and_lemma, 
istype-void, 
int_formula_prop_eq_lemma, 
int_term_value_var_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_wf, 
nequal_wf, 
nat_plus_inc_int_nzero, 
q_less_wf, 
qless_witness, 
isint-int, 
lt_int_wf, 
eqtt_to_assert, 
assert_of_lt_int, 
eqff_to_assert, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_wf, 
bool_subtype_base, 
assert-bnot, 
int_formula_prop_not_lemma, 
intformnot_wf, 
add-is-int-iff, 
multiply-is-int-iff, 
itermAdd_wf, 
itermMultiply_wf, 
int_term_value_add_lemma, 
int_term_value_mul_lemma, 
false_wf, 
set_subtype_base, 
equal_wf, 
int_term_value_subtract_lemma, 
itermSubtract_wf, 
decidable__equal_int, 
div_rem_sum, 
subtype_rel_sets, 
mul-associates, 
mul-commutes, 
mul-swap, 
one-mul, 
mul-distributes, 
minus-one-mul, 
add-associates, 
add-mul-special, 
zero-mul, 
zero-add, 
decidable__le, 
not_wf, 
mul_nat_plus, 
le_wf, 
rem_bounds_1, 
int_term_value_minus_lemma, 
itermMinus_wf, 
decidable__lt, 
int_formula_prop_le_lemma, 
intformle_wf, 
rem_bounds_2, 
add-swap
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
applyEquality, 
because_Cache, 
hypothesis, 
sqequalRule, 
multiplyEquality, 
setElimination, 
rename, 
independent_isectElimination, 
equalitySymmetry, 
equalityTransitivity, 
productElimination, 
independent_functionElimination, 
dependent_functionElimination, 
lambdaFormation_alt, 
natural_numberEquality, 
baseApply, 
closedConclusion, 
baseClosed, 
universeIsType, 
isintReduceTrue, 
callbyvalueReduce, 
sqleReflexivity, 
minusEquality, 
intEquality, 
productEquality, 
lambdaEquality_alt, 
inhabitedIsType, 
independent_pairEquality, 
divideEquality, 
dependent_set_memberEquality_alt, 
approximateComputation, 
dependent_pairFormation_alt, 
int_eqEquality, 
isect_memberEquality_alt, 
voidElimination, 
independent_pairFormation, 
equalityIsType4, 
hyp_replacement, 
applyLambdaEquality, 
addEquality, 
unionElimination, 
equalityElimination, 
equalityIsType2, 
promote_hyp, 
instantiate, 
cumulativity, 
equalityIsType1, 
pointwiseFunctionality, 
imageElimination, 
remainderEquality, 
setEquality, 
lambdaEquality, 
dependent_pairFormation, 
lambdaFormation, 
dependent_set_memberEquality, 
voidEquality, 
isect_memberEquality, 
functionIsType
Latex:
\mforall{}[k,l:\mBbbN{}\msupplus{}].  \mforall{}[r:\mBbbQ{}].    |(k  *  r)  -  l  *  proportional-round(r;k;l)|  <  l
Date html generated:
2019_10_16-PM-00_31_46
Last ObjectModification:
2018_10_10-PM-01_07_04
Theory : rationals
Home
Index