Nuprl Lemma : proportional-round-property

[k,l:ℕ+]. ∀[r:ℚ].  |(k r) proportional-round(r;k;l)| < l


Proof




Definitions occuring in Statement :  qabs: |r| qless: r < s qsub: s qmul: s proportional-round: proportional-round(r;k;l) rationals: nat_plus: + uall: [x:A]. B[x] multiply: m
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T subtype_rel: A ⊆B nat_plus: + so_lambda: λ2x.t[x] so_apply: x[s] uimplies: supposing a prop: guard: {T} iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q implies:  Q all: x:A. B[x] exists: x:A. B[x] cand: c∧ B not: ¬A qdiv: (r/s) proportional-round: proportional-round(r;k;l) qmul: s qsub: s qabs: |r| q_less: q_less(r;s) ifthenelse: if then else fi  btrue: tt qpositive: qpositive(r) qinv: 1/r qadd: s callbyvalueall: callbyvalueall evalall: evalall(t) has-value: (a)↓ has-valueall: has-valueall(a) bfalse: ff int_nzero: -o nequal: a ≠ b ∈  satisfiable_int_formula: satisfiable_int_formula(fmla) false: False top: Top bool: 𝔹 unit: Unit it: uiff: uiff(P;Q) band: p ∧b q or: P ∨ Q sq_type: SQType(T) bnot: ¬bb assert: b less_than: a < b squash: T bor: p ∨bq rev_uimplies: rev_uimplies(P;Q) true: True decidable: Dec(P) subtract: m le: A ≤ B nat: ge: i ≥  gt: i > j int_lower: {...i}
Lemmas referenced :  assert-q_less-eq qabs_wf qsub_wf qmul_wf proportional-round_wf subtype_rel_set int-subtype-rationals iff_weakening_equal q-elim nat_plus_properties iff_weakening_uiff assert_wf qeq_wf2 equal-wf-base rationals_wf int_subtype_base assert-qeq valueall-type-has-valueall int-valueall-type evalall-reduce product-valueall-type nat_plus_wf set-valueall-type less_than_wf mul_nzero full-omega-unsat intformand_wf intformeq_wf itermVar_wf itermConstant_wf intformless_wf istype-int int_formula_prop_and_lemma istype-void int_formula_prop_eq_lemma int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_less_lemma int_formula_prop_wf nequal_wf nat_plus_inc_int_nzero q_less_wf qless_witness isint-int lt_int_wf eqtt_to_assert assert_of_lt_int eqff_to_assert bool_cases_sqequal subtype_base_sq bool_wf bool_subtype_base assert-bnot int_formula_prop_not_lemma intformnot_wf add-is-int-iff multiply-is-int-iff itermAdd_wf itermMultiply_wf int_term_value_add_lemma int_term_value_mul_lemma false_wf set_subtype_base equal_wf int_term_value_subtract_lemma itermSubtract_wf decidable__equal_int div_rem_sum subtype_rel_sets mul-associates mul-commutes mul-swap one-mul mul-distributes minus-one-mul add-associates add-mul-special zero-mul zero-add decidable__le not_wf mul_nat_plus le_wf rem_bounds_1 int_term_value_minus_lemma itermMinus_wf decidable__lt int_formula_prop_le_lemma intformle_wf rem_bounds_2 add-swap
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality applyEquality because_Cache hypothesis sqequalRule multiplyEquality setElimination rename independent_isectElimination equalitySymmetry equalityTransitivity productElimination independent_functionElimination dependent_functionElimination lambdaFormation_alt natural_numberEquality baseApply closedConclusion baseClosed universeIsType isintReduceTrue callbyvalueReduce sqleReflexivity minusEquality intEquality productEquality lambdaEquality_alt inhabitedIsType independent_pairEquality divideEquality dependent_set_memberEquality_alt approximateComputation dependent_pairFormation_alt int_eqEquality isect_memberEquality_alt voidElimination independent_pairFormation equalityIsType4 hyp_replacement applyLambdaEquality addEquality unionElimination equalityElimination equalityIsType2 promote_hyp instantiate cumulativity equalityIsType1 pointwiseFunctionality imageElimination remainderEquality setEquality lambdaEquality dependent_pairFormation lambdaFormation dependent_set_memberEquality voidEquality isect_memberEquality functionIsType

Latex:
\mforall{}[k,l:\mBbbN{}\msupplus{}].  \mforall{}[r:\mBbbQ{}].    |(k  *  r)  -  l  *  proportional-round(r;k;l)|  <  l



Date html generated: 2019_10_16-PM-00_31_46
Last ObjectModification: 2018_10_10-PM-01_07_04

Theory : rationals


Home Index