Nuprl Lemma : qabs_wf

[r:ℚ]. (|r| ∈ ℚ)


Proof




Definitions occuring in Statement :  qabs: |r| rationals: uall: [x:A]. B[x] member: t ∈ T
Definitions unfolded in proof :  qabs: |r| uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a callbyvalueall: callbyvalueall has-value: (a)↓ has-valueall: has-valueall(a) subtype_rel: A ⊆B
Lemmas referenced :  valueall-type-has-valueall rationals_wf rationals-valueall-type evalall-reduce ifthenelse_wf qpositive_wf qmul_wf int-subtype-rationals
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation introduction cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesis independent_isectElimination hypothesisEquality callbyvalueReduce minusEquality natural_numberEquality applyEquality axiomEquality equalityTransitivity equalitySymmetry

Latex:
\mforall{}[r:\mBbbQ{}].  (|r|  \mmember{}  \mBbbQ{})



Date html generated: 2016_05_15-PM-10_44_38
Last ObjectModification: 2015_12_27-PM-07_54_53

Theory : rationals


Home Index