Nuprl Lemma : qabs_wf
∀[r:ℚ]. (|r| ∈ ℚ)
Proof
Definitions occuring in Statement : 
qabs: |r|
, 
rationals: ℚ
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
Definitions unfolded in proof : 
qabs: |r|
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
callbyvalueall: callbyvalueall, 
has-value: (a)↓
, 
has-valueall: has-valueall(a)
, 
subtype_rel: A ⊆r B
Lemmas referenced : 
valueall-type-has-valueall, 
rationals_wf, 
rationals-valueall-type, 
evalall-reduce, 
ifthenelse_wf, 
qpositive_wf, 
qmul_wf, 
int-subtype-rationals
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation, 
introduction, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesis, 
independent_isectElimination, 
hypothesisEquality, 
callbyvalueReduce, 
minusEquality, 
natural_numberEquality, 
applyEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry
Latex:
\mforall{}[r:\mBbbQ{}].  (|r|  \mmember{}  \mBbbQ{})
Date html generated:
2016_05_15-PM-10_44_38
Last ObjectModification:
2015_12_27-PM-07_54_53
Theory : rationals
Home
Index