Nuprl Lemma : proportional-round_wf

[r:ℚ]. ∀[k:ℤ]. ∀[l:ℤ-o].  (proportional-round(r;k;l) ∈ ℤ)


Proof




Definitions occuring in Statement :  proportional-round: proportional-round(r;k;l) rationals: int_nzero: -o uall: [x:A]. B[x] member: t ∈ T int:
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T rationals: quotient: x,y:A//B[x; y] and: P ∧ Q all: x:A. B[x] implies:  Q qeq: qeq(r;s) uimplies: supposing a so_lambda: λ2x.t[x] so_apply: x[s] int_nzero: -o callbyvalueall: callbyvalueall has-value: (a)↓ has-valueall: has-valueall(a) proportional-round: proportional-round(r;k;l) b-union: A ⋃ B tunion: x:A.B[x] bool: 𝔹 unit: Unit ifthenelse: if then else fi  pi2: snd(t) btrue: tt uiff: uiff(P;Q) prop: nequal: a ≠ b ∈  not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False top: Top subtype_rel: A ⊆B bfalse: ff sq_type: SQType(T) guard: {T} decidable: Dec(P) or: P ∨ Q
Lemmas referenced :  b-union_wf int_nzero_wf valueall-type-has-valueall bunion-valueall-type int-valueall-type product-valueall-type set-valueall-type nequal_wf evalall-reduce eqtt_to_assert assert_of_eq_int and_wf equal_wf int_nzero_properties satisfiable-full-omega-tt intformand_wf intformeq_wf itermVar_wf itermConstant_wf intformnot_wf int_formula_prop_and_lemma int_formula_prop_eq_lemma int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_not_lemma int_formula_prop_wf equal-wf-base int_subtype_base equal-wf-T-base bool_wf qeq_wf rationals_wf subtype_base_sq decidable__equal_int itermMultiply_wf int_term_value_mul_lemma div_div div-cancel mul_nzero mul_preserves_eq div-mul-cancel
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalHypSubstitution pointwiseFunctionalityForEquality intEquality sqequalRule pertypeElimination productElimination thin equalityTransitivity hypothesis equalitySymmetry extract_by_obid isectElimination productEquality lambdaFormation because_Cache independent_isectElimination lambdaEquality independent_functionElimination hypothesisEquality natural_numberEquality callbyvalueReduce imageElimination unionElimination equalityElimination isintReduceTrue addLevel levelHypothesis dependent_set_memberEquality independent_pairFormation applyLambdaEquality setElimination rename multiplyEquality divideEquality dependent_pairFormation int_eqEquality dependent_functionElimination isect_memberEquality voidElimination voidEquality computeAll applyEquality baseClosed axiomEquality instantiate cumulativity

Latex:
\mforall{}[r:\mBbbQ{}].  \mforall{}[k:\mBbbZ{}].  \mforall{}[l:\mBbbZ{}\msupminus{}\msupzero{}].    (proportional-round(r;k;l)  \mmember{}  \mBbbZ{})



Date html generated: 2018_05_21-PM-11_44_13
Last ObjectModification: 2017_07_26-PM-06_42_59

Theory : rationals


Home Index