Step
*
3
of Lemma
proportional-round-property
1. k : ℕ+
2. l : ℕ+
3. p : ℤ
4. q : ℤ
5. ¬(k * p * 1) + (((-1) * l * (((p * 1) * k) ÷ q * l)) * q) < 0
6. ¬0 < (k * p * 1) + (((-1) * l * (((p * 1) * k) ÷ q * l)) * q)
7. 0 < q
8. ¬(q = 0 ∈ ℚ)
9. ¬↑qeq(q;0)
⊢ (-1) * ((k * p * 1) + (((-1) * l * (((p * 1) * k) ÷ q * l)) * q)) < q * l
BY
{ (MoveToConcl (-5)
THEN (RW IntNormC 0 THENA Auto)
THEN (GenConclTerm ⌜k * p⌝⋅ THENA Auto)
THEN (InstLemma `div_rem_sum` [⌜v⌝;⌜l * q⌝]⋅ THENA Auto)
THEN (Subst ⌜l * q * (v ÷ l * q) ~ v - v rem l * q⌝ 0⋅ THENA Auto')
THEN (RW IntNormC 0 THENA Auto)⋅)⋅ }
1
1. k : ℕ+
2. l : ℕ+
3. p : ℤ
4. q : ℤ
5. ¬0 < (k * p * 1) + (((-1) * l * (((p * 1) * k) ÷ q * l)) * q)
6. 0 < q
7. ¬(q = 0 ∈ ℚ)
8. ¬↑qeq(q;0)
9. v : ℤ
10. (k * p) = v ∈ ℤ
11. v = (((v ÷ l * q) * l * q) + (v rem l * q)) ∈ ℤ
⊢ (¬v rem l * q < 0)
⇒ (-1) * (v rem l * q) < l * q
Latex:
Latex:
1. k : \mBbbN{}\msupplus{}
2. l : \mBbbN{}\msupplus{}
3. p : \mBbbZ{}
4. q : \mBbbZ{}
5. \mneg{}(k * p * 1) + (((-1) * l * (((p * 1) * k) \mdiv{} q * l)) * q) < 0
6. \mneg{}0 < (k * p * 1) + (((-1) * l * (((p * 1) * k) \mdiv{} q * l)) * q)
7. 0 < q
8. \mneg{}(q = 0)
9. \mneg{}\muparrow{}qeq(q;0)
\mvdash{} (-1) * ((k * p * 1) + (((-1) * l * (((p * 1) * k) \mdiv{} q * l)) * q)) < q * l
By
Latex:
(MoveToConcl (-5)
THEN (RW IntNormC 0 THENA Auto)
THEN (GenConclTerm \mkleeneopen{}k * p\mkleeneclose{}\mcdot{} THENA Auto)
THEN (InstLemma `div\_rem\_sum` [\mkleeneopen{}v\mkleeneclose{};\mkleeneopen{}l * q\mkleeneclose{}]\mcdot{} THENA Auto)
THEN (Subst \mkleeneopen{}l * q * (v \mdiv{} l * q) \msim{} v - v rem l * q\mkleeneclose{} 0\mcdot{} THENA Auto')
THEN (RW IntNormC 0 THENA Auto)\mcdot{})\mcdot{}
Home
Index