Step
*
1
of Lemma
q-constraint-positive
1. x : ℕ ⟶ ℚ
2. r : ℤ
3. k : ℕ+
4. y : ℚ List
5. k ≤ ||y||
6. 0 < x k
7. ¬((x k) = 0 ∈ ℚ)
8. q-rel(r;q-linear(k - 1;j.x j;y) + ((x k) * y[k - 1]))
⊢ q-rel(r;y[k - 1] + ((1/x k) * q-linear(k - 1;j.x j;y)))
BY
{ ((MoveToConcl (-1))
THEN Unfold `q-rel` 0
THEN Repeat ((SplitOnConclITE THENA Auto))
THEN Auto
THEN QMul ⌜x k⌝ 0⋅
THEN Auto)⋅ }
Latex:
Latex:
1. x : \mBbbN{} {}\mrightarrow{} \mBbbQ{}
2. r : \mBbbZ{}
3. k : \mBbbN{}\msupplus{}
4. y : \mBbbQ{} List
5. k \mleq{} ||y||
6. 0 < x k
7. \mneg{}((x k) = 0)
8. q-rel(r;q-linear(k - 1;j.x j;y) + ((x k) * y[k - 1]))
\mvdash{} q-rel(r;y[k - 1] + ((1/x k) * q-linear(k - 1;j.x j;y)))
By
Latex:
((MoveToConcl (-1))
THEN Unfold `q-rel` 0
THEN Repeat ((SplitOnConclITE THENA Auto))
THEN Auto
THEN QMul \mkleeneopen{}x k\mkleeneclose{} 0\mcdot{}
THEN Auto)\mcdot{}
Home
Index