Nuprl Lemma : q-constraint-positive

[x:ℕ ⟶ ℚ]. ∀[r:ℤ]. ∀[k:ℕ+]. ∀[y:ℚ List].
  (uiff(q-rel(r;q-linear(k;j.x j;y));q-rel(r;y[k 1] ((1/x k) q-linear(k 1;j.x j;y))))) supposing 
     (0 < and 
     (k ≤ ||y||))


Proof




Definitions occuring in Statement :  q-rel: q-rel(r;x) q-linear: q-linear(k;i.X[i];y) qless: r < s qdiv: (r/s) qmul: s qadd: s rationals: select: L[n] length: ||as|| list: List nat_plus: + nat: uiff: uiff(P;Q) uimplies: supposing a uall: [x:A]. B[x] le: A ≤ B apply: a function: x:A ⟶ B[x] subtract: m natural_number: $n int:
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a uiff: uiff(P;Q) and: P ∧ Q q-rel: q-rel(r;x) ifthenelse: if then else fi  all: x:A. B[x] implies:  Q bool: 𝔹 nat_plus: + decidable: Dec(P) or: P ∨ Q not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False top: Top prop: le: A ≤ B subtype_rel: A ⊆B nat: so_lambda: λ2x.t[x] so_apply: x[s] squash: T true: True guard: {T} iff: ⇐⇒ Q rev_implies:  Q rev_uimplies: rev_uimplies(P;Q) unit: Unit it: btrue: tt bfalse: ff
Lemmas referenced :  eq_int_wf rationals_wf qadd_wf select_wf subtract_wf nat_plus_properties decidable__le full-omega-unsat intformand_wf intformnot_wf intformle_wf itermConstant_wf itermSubtract_wf itermVar_wf intformless_wf istype-int int_formula_prop_and_lemma istype-void int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_subtract_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf decidable__lt length_wf qmul_wf qdiv_wf nat_plus_subtype_nat q-linear_wf le_wf nat_wf qle_witness qle_wf qless_witness qless_wf ifthenelse_wf q-rel_wf squash_wf true_wf q-linear-unroll subtype_rel_self iff_weakening_equal list_wf nat_plus_wf int-subtype-rationals qless_transitivity_2_qorder qle_weakening_eq_qorder qless_irreflexivity qmul_preserves_qless qmul_preserves_qle not_wf bnot_wf satisfiable-full-omega-tt equal-wf-base-T qmul-preserves-eq assert_wf int_subtype_base equal-wf-base bool_wf uiff_transitivity eqtt_to_assert assert_of_eq_int iff_transitivity iff_weakening_uiff eqff_to_assert assert_of_bnot equal_wf qmul_over_plus_qrng qmul_zero_qrng qadd_comm_q qmul-qdiv-cancel3 qmul_one_qrng qle_weakening_lt_qorder qmul_preserves_qle2
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut independent_pairFormation sqequalRule sqequalHypSubstitution thin extract_by_obid isectElimination hypothesisEquality natural_numberEquality hypothesis inhabitedIsType lambdaFormation_alt unionElimination axiomEquality equalityIsType2 universeIsType baseClosed setElimination rename because_Cache independent_isectElimination dependent_functionElimination approximateComputation independent_functionElimination dependent_pairFormation_alt lambdaEquality_alt int_eqEquality isect_memberEquality_alt voidElimination productElimination applyEquality dependent_set_memberEquality_alt equalityIsType1 equalityTransitivity equalitySymmetry instantiate universeEquality imageElimination imageMemberEquality promote_hyp independent_pairEquality equalityIsType3 functionIsType functionExtensionality computeAll voidEquality isect_memberEquality dependent_pairFormation dependent_set_memberEquality lambdaEquality lambdaFormation intEquality closedConclusion baseApply equalityElimination impliesFunctionality isect_memberFormation applyLambdaEquality

Latex:
\mforall{}[x:\mBbbN{}  {}\mrightarrow{}  \mBbbQ{}].  \mforall{}[r:\mBbbZ{}].  \mforall{}[k:\mBbbN{}\msupplus{}].  \mforall{}[y:\mBbbQ{}  List].
    (uiff(q-rel(r;q-linear(k;j.x  j;y));q-rel(r;y[k  -  1]
          +  ((1/x  k)  *  q-linear(k  -  1;j.x  j;y)))))  supposing 
          (0  <  x  k  and 
          (k  \mleq{}  ||y||))



Date html generated: 2019_10_16-PM-00_33_45
Last ObjectModification: 2018_10_10-AM-11_05_12

Theory : rationals


Home Index