Nuprl Lemma : q-constraint-positive
∀[x:ℕ ⟶ ℚ]. ∀[r:ℤ]. ∀[k:ℕ+]. ∀[y:ℚ List].
  (uiff(q-rel(r;q-linear(k;j.x j;y));q-rel(r;y[k - 1] + ((1/x k) * q-linear(k - 1;j.x j;y))))) supposing 
     (0 < x k and 
     (k ≤ ||y||))
Proof
Definitions occuring in Statement : 
q-rel: q-rel(r;x)
, 
q-linear: q-linear(k;i.X[i];y)
, 
qless: r < s
, 
qdiv: (r/s)
, 
qmul: r * s
, 
qadd: r + s
, 
rationals: ℚ
, 
select: L[n]
, 
length: ||as||
, 
list: T List
, 
nat_plus: ℕ+
, 
nat: ℕ
, 
uiff: uiff(P;Q)
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
le: A ≤ B
, 
apply: f a
, 
function: x:A ⟶ B[x]
, 
subtract: n - m
, 
natural_number: $n
, 
int: ℤ
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
q-rel: q-rel(r;x)
, 
ifthenelse: if b then t else f fi 
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
bool: 𝔹
, 
nat_plus: ℕ+
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
not: ¬A
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
false: False
, 
top: Top
, 
prop: ℙ
, 
le: A ≤ B
, 
subtype_rel: A ⊆r B
, 
nat: ℕ
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
squash: ↓T
, 
true: True
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
rev_uimplies: rev_uimplies(P;Q)
, 
unit: Unit
, 
it: ⋅
, 
btrue: tt
, 
bfalse: ff
Lemmas referenced : 
eq_int_wf, 
rationals_wf, 
qadd_wf, 
select_wf, 
subtract_wf, 
nat_plus_properties, 
decidable__le, 
full-omega-unsat, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermSubtract_wf, 
itermVar_wf, 
intformless_wf, 
istype-int, 
int_formula_prop_and_lemma, 
istype-void, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_subtract_lemma, 
int_term_value_var_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_wf, 
decidable__lt, 
length_wf, 
qmul_wf, 
qdiv_wf, 
nat_plus_subtype_nat, 
q-linear_wf, 
le_wf, 
nat_wf, 
qle_witness, 
qle_wf, 
qless_witness, 
qless_wf, 
ifthenelse_wf, 
q-rel_wf, 
squash_wf, 
true_wf, 
q-linear-unroll, 
subtype_rel_self, 
iff_weakening_equal, 
list_wf, 
nat_plus_wf, 
int-subtype-rationals, 
qless_transitivity_2_qorder, 
qle_weakening_eq_qorder, 
qless_irreflexivity, 
qmul_preserves_qless, 
qmul_preserves_qle, 
not_wf, 
bnot_wf, 
satisfiable-full-omega-tt, 
equal-wf-base-T, 
qmul-preserves-eq, 
assert_wf, 
int_subtype_base, 
equal-wf-base, 
bool_wf, 
uiff_transitivity, 
eqtt_to_assert, 
assert_of_eq_int, 
iff_transitivity, 
iff_weakening_uiff, 
eqff_to_assert, 
assert_of_bnot, 
equal_wf, 
qmul_over_plus_qrng, 
qmul_zero_qrng, 
qadd_comm_q, 
qmul-qdiv-cancel3, 
qmul_one_qrng, 
qle_weakening_lt_qorder, 
qmul_preserves_qle2
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
independent_pairFormation, 
sqequalRule, 
sqequalHypSubstitution, 
thin, 
extract_by_obid, 
isectElimination, 
hypothesisEquality, 
natural_numberEquality, 
hypothesis, 
inhabitedIsType, 
lambdaFormation_alt, 
unionElimination, 
axiomEquality, 
equalityIsType2, 
universeIsType, 
baseClosed, 
setElimination, 
rename, 
because_Cache, 
independent_isectElimination, 
dependent_functionElimination, 
approximateComputation, 
independent_functionElimination, 
dependent_pairFormation_alt, 
lambdaEquality_alt, 
int_eqEquality, 
isect_memberEquality_alt, 
voidElimination, 
productElimination, 
applyEquality, 
dependent_set_memberEquality_alt, 
equalityIsType1, 
equalityTransitivity, 
equalitySymmetry, 
instantiate, 
universeEquality, 
imageElimination, 
imageMemberEquality, 
promote_hyp, 
independent_pairEquality, 
equalityIsType3, 
functionIsType, 
functionExtensionality, 
computeAll, 
voidEquality, 
isect_memberEquality, 
dependent_pairFormation, 
dependent_set_memberEquality, 
lambdaEquality, 
lambdaFormation, 
intEquality, 
closedConclusion, 
baseApply, 
equalityElimination, 
impliesFunctionality, 
isect_memberFormation, 
applyLambdaEquality
Latex:
\mforall{}[x:\mBbbN{}  {}\mrightarrow{}  \mBbbQ{}].  \mforall{}[r:\mBbbZ{}].  \mforall{}[k:\mBbbN{}\msupplus{}].  \mforall{}[y:\mBbbQ{}  List].
    (uiff(q-rel(r;q-linear(k;j.x  j;y));q-rel(r;y[k  -  1]
          +  ((1/x  k)  *  q-linear(k  -  1;j.x  j;y)))))  supposing 
          (0  <  x  k  and 
          (k  \mleq{}  ||y||))
Date html generated:
2019_10_16-PM-00_33_45
Last ObjectModification:
2018_10_10-AM-11_05_12
Theory : rationals
Home
Index