Nuprl Lemma : q-linear_wf

[k:ℕ]. ∀[X:ℕ ⟶ ℚ]. ∀[y:ℚ List].  q-linear(k;j.X[j];y) ∈ ℚ supposing k ≤ ||y||


Proof




Definitions occuring in Statement :  q-linear: q-linear(k;i.X[i];y) rationals: length: ||as|| list: List nat: uimplies: supposing a uall: [x:A]. B[x] so_apply: x[s] le: A ≤ B member: t ∈ T function: x:A ⟶ B[x]
Definitions unfolded in proof :  q-linear: q-linear(k;i.X[i];y) uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a so_apply: x[s] nat: le: A ≤ B and: P ∧ Q less_than': less_than'(a;b) false: False not: ¬A implies:  Q prop: so_lambda: λ2x.t[x] int_seg: {i..j-} guard: {T} ge: i ≥  lelt: i ≤ j < k all: x:A. B[x] decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] top: Top
Lemmas referenced :  nat_wf list_wf int_seg_wf int_formula_prop_less_lemma intformless_wf length_wf decidable__lt rationals_wf select_wf int_formula_prop_wf int_term_value_var_lemma int_term_value_add_lemma int_term_value_constant_lemma int_formula_prop_le_lemma int_formula_prop_not_lemma int_formula_prop_and_lemma itermVar_wf itermAdd_wf itermConstant_wf intformle_wf intformnot_wf intformand_wf satisfiable-full-omega-tt decidable__le nat_properties int_seg_properties qmul_wf qsum_wf le_wf false_wf qadd_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation introduction cut lemma_by_obid sqequalHypSubstitution isectElimination thin applyEquality hypothesisEquality dependent_set_memberEquality natural_numberEquality independent_pairFormation lambdaFormation hypothesis setElimination rename lambdaEquality because_Cache addEquality productElimination dependent_functionElimination unionElimination independent_isectElimination dependent_pairFormation int_eqEquality intEquality isect_memberEquality voidElimination voidEquality computeAll axiomEquality equalityTransitivity equalitySymmetry functionEquality

Latex:
\mforall{}[k:\mBbbN{}].  \mforall{}[X:\mBbbN{}  {}\mrightarrow{}  \mBbbQ{}].  \mforall{}[y:\mBbbQ{}  List].    q-linear(k;j.X[j];y)  \mmember{}  \mBbbQ{}  supposing  k  \mleq{}  ||y||



Date html generated: 2016_05_15-PM-11_17_02
Last ObjectModification: 2016_01_16-PM-09_18_35

Theory : rationals


Home Index