Nuprl Lemma : q-linear_wf
∀[k:ℕ]. ∀[X:ℕ ⟶ ℚ]. ∀[y:ℚ List].  q-linear(k;j.X[j];y) ∈ ℚ supposing k ≤ ||y||
Proof
Definitions occuring in Statement : 
q-linear: q-linear(k;i.X[i];y)
, 
rationals: ℚ
, 
length: ||as||
, 
list: T List
, 
nat: ℕ
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s]
, 
le: A ≤ B
, 
member: t ∈ T
, 
function: x:A ⟶ B[x]
Definitions unfolded in proof : 
q-linear: q-linear(k;i.X[i];y)
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
so_apply: x[s]
, 
nat: ℕ
, 
le: A ≤ B
, 
and: P ∧ Q
, 
less_than': less_than'(a;b)
, 
false: False
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
prop: ℙ
, 
so_lambda: λ2x.t[x]
, 
int_seg: {i..j-}
, 
guard: {T}
, 
ge: i ≥ j 
, 
lelt: i ≤ j < k
, 
all: ∀x:A. B[x]
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
top: Top
Lemmas referenced : 
nat_wf, 
list_wf, 
int_seg_wf, 
int_formula_prop_less_lemma, 
intformless_wf, 
length_wf, 
decidable__lt, 
rationals_wf, 
select_wf, 
int_formula_prop_wf, 
int_term_value_var_lemma, 
int_term_value_add_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_le_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_and_lemma, 
itermVar_wf, 
itermAdd_wf, 
itermConstant_wf, 
intformle_wf, 
intformnot_wf, 
intformand_wf, 
satisfiable-full-omega-tt, 
decidable__le, 
nat_properties, 
int_seg_properties, 
qmul_wf, 
qsum_wf, 
le_wf, 
false_wf, 
qadd_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation, 
introduction, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
applyEquality, 
hypothesisEquality, 
dependent_set_memberEquality, 
natural_numberEquality, 
independent_pairFormation, 
lambdaFormation, 
hypothesis, 
setElimination, 
rename, 
lambdaEquality, 
because_Cache, 
addEquality, 
productElimination, 
dependent_functionElimination, 
unionElimination, 
independent_isectElimination, 
dependent_pairFormation, 
int_eqEquality, 
intEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
computeAll, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
functionEquality
Latex:
\mforall{}[k:\mBbbN{}].  \mforall{}[X:\mBbbN{}  {}\mrightarrow{}  \mBbbQ{}].  \mforall{}[y:\mBbbQ{}  List].    q-linear(k;j.X[j];y)  \mmember{}  \mBbbQ{}  supposing  k  \mleq{}  ||y||
Date html generated:
2016_05_15-PM-11_17_02
Last ObjectModification:
2016_01_16-PM-09_18_35
Theory : rationals
Home
Index