Nuprl Lemma : q-linear-unroll

[k:ℕ+]. ∀[X:ℕ ⟶ ℚ]. ∀[y:ℚ List].
  q-linear(k;j.X[j];y) (q-linear(k 1;j.X[j];y) (X[k] y[k 1])) ∈ ℚ supposing k ≤ ||y||


Proof




Definitions occuring in Statement :  q-linear: q-linear(k;i.X[i];y) qmul: s qadd: s rationals: select: L[n] length: ||as|| list: List nat_plus: + nat: uimplies: supposing a uall: [x:A]. B[x] so_apply: x[s] le: A ≤ B function: x:A ⟶ B[x] subtract: m natural_number: $n equal: t ∈ T
Definitions unfolded in proof :  q-linear: q-linear(k;i.X[i];y) uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a squash: T prop: so_apply: x[s] nat_plus: + all: x:A. B[x] decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] top: Top false: False nat: le: A ≤ B and: P ∧ Q less_than': less_than'(a;b) not: ¬A implies:  Q so_lambda: λ2x.t[x] int_seg: {i..j-} guard: {T} lelt: i ≤ j < k true: True subtype_rel: A ⊆B iff: ⇐⇒ Q rev_implies:  Q
Lemmas referenced :  equal_wf squash_wf true_wf rationals_wf qadd_wf nat_wf nat_plus_properties decidable__equal_int satisfiable-full-omega-tt intformnot_wf intformeq_wf itermConstant_wf int_formula_prop_not_lemma int_formula_prop_eq_lemma int_term_value_constant_lemma int_formula_prop_wf false_wf le_wf sum_unroll_hi_q decidable__lt intformand_wf intformless_wf itermVar_wf int_formula_prop_and_lemma int_formula_prop_less_lemma int_term_value_var_lemma qmul_wf int_seg_properties decidable__le intformle_wf itermAdd_wf int_formula_prop_le_lemma int_term_value_add_lemma select_wf length_wf int_seg_wf qsum_wf subtract_wf itermSubtract_wf int_term_value_subtract_lemma nat_plus_subtype_nat iff_weakening_equal subtract-add-cancel qadd_assoc list_wf nat_plus_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation introduction cut applyEquality thin lambdaEquality sqequalHypSubstitution imageElimination extract_by_obid isectElimination hypothesisEquality equalityTransitivity hypothesis equalitySymmetry universeEquality functionExtensionality setElimination rename dependent_functionElimination natural_numberEquality because_Cache unionElimination independent_isectElimination dependent_pairFormation intEquality isect_memberEquality voidElimination voidEquality computeAll dependent_set_memberEquality independent_pairFormation lambdaFormation int_eqEquality addEquality productElimination imageMemberEquality baseClosed independent_functionElimination axiomEquality functionEquality

Latex:
\mforall{}[k:\mBbbN{}\msupplus{}].  \mforall{}[X:\mBbbN{}  {}\mrightarrow{}  \mBbbQ{}].  \mforall{}[y:\mBbbQ{}  List].
    q-linear(k;j.X[j];y)  =  (q-linear(k  -  1;j.X[j];y)  +  (X[k]  *  y[k  -  1]))  supposing  k  \mleq{}  ||y||



Date html generated: 2018_05_22-AM-00_17_30
Last ObjectModification: 2017_07_26-PM-06_53_27

Theory : rationals


Home Index