Step
*
of Lemma
q-constraint-zero
∀[x:ℕ ⟶ ℚ]. ∀[r:ℤ]. ∀[k:ℕ+]. ∀[y:ℚ List].
(uiff(q-rel(r;q-linear(k;j.x j;y));q-rel(r;q-linear(k - 1;j.x j;y)))) supposing (((x k) = 0 ∈ ℚ) and (k ≤ ||y||))
BY
{ TACTIC:((UnivCD THENA Auto)
THEN ((RW(AddrC [1;2] (LemmaC `q-linear-unroll`)) 0) THENA Auto)
THEN (HypSubst' -1 0 THENA Auto)
THEN QNorm 0
THEN Auto) }
Latex:
Latex:
\mforall{}[x:\mBbbN{} {}\mrightarrow{} \mBbbQ{}]. \mforall{}[r:\mBbbZ{}]. \mforall{}[k:\mBbbN{}\msupplus{}]. \mforall{}[y:\mBbbQ{} List].
(uiff(q-rel(r;q-linear(k;j.x j;y));q-rel(r;q-linear(k - 1;j.x j;y)))) supposing
(((x k) = 0) and
(k \mleq{} ||y||))
By
Latex:
TACTIC:((UnivCD THENA Auto)
THEN ((RW(AddrC [1;2] (LemmaC `q-linear-unroll`)) 0) THENA Auto)
THEN (HypSubst' -1 0 THENA Auto)
THEN QNorm 0
THEN Auto)
Home
Index