Nuprl Lemma : q-constraint-zero

[x:ℕ ⟶ ℚ]. ∀[r:ℤ]. ∀[k:ℕ+]. ∀[y:ℚ List].
  (uiff(q-rel(r;q-linear(k;j.x j;y));q-rel(r;q-linear(k 1;j.x j;y)))) supposing (((x k) 0 ∈ ℚand (k ≤ ||y||))


Proof




Definitions occuring in Statement :  q-rel: q-rel(r;x) q-linear: q-linear(k;i.X[i];y) rationals: length: ||as|| list: List nat_plus: + nat: uiff: uiff(P;Q) uimplies: supposing a uall: [x:A]. B[x] le: A ≤ B apply: a function: x:A ⟶ B[x] subtract: m natural_number: $n int: equal: t ∈ T
Definitions unfolded in proof :  member: t ∈ T prop: uall: [x:A]. B[x] nat: nat_plus: + all: x:A. B[x] decidable: Dec(P) or: P ∨ Q uimplies: supposing a not: ¬A implies:  Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False top: Top and: P ∧ Q so_lambda: λ2x.t[x] so_apply: x[s] le: A ≤ B uiff: uiff(P;Q) squash: T true: True subtype_rel: A ⊆B guard: {T} iff: ⇐⇒ Q q-rel: q-rel(r;x) ifthenelse: if then else fi  bool: 𝔹 rev_implies:  Q
Lemmas referenced :  uiff_wf q-rel_wf qadd_wf q-linear_wf subtract_wf nat_plus_properties decidable__le full-omega-unsat intformand_wf intformnot_wf intformle_wf itermConstant_wf itermSubtract_wf itermVar_wf intformless_wf istype-int int_formula_prop_and_lemma istype-void int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_subtract_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf le_wf length_wf rationals_wf qmul_wf select_wf decidable__lt squash_wf true_wf q-linear-unroll nat_wf subtype_rel_self iff_weakening_equal eq_int_wf qle_witness qle_wf qless_witness qless_wf ifthenelse_wf nat_plus_subtype_nat list_wf nat_plus_wf mon_ident_q qadd_comm_q qmul_zero_qrng
Rules used in proof :  cut hypothesis thin hyp_replacement equalitySymmetry applyLambdaEquality sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity introduction extract_by_obid sqequalHypSubstitution isectElimination hypothesisEquality dependent_set_memberEquality_alt setElimination rename because_Cache natural_numberEquality dependent_functionElimination unionElimination independent_isectElimination approximateComputation independent_functionElimination dependent_pairFormation_alt lambdaEquality_alt int_eqEquality isect_memberEquality_alt voidElimination sqequalRule independent_pairFormation universeIsType applyEquality productElimination isect_memberFormation_alt imageElimination equalityTransitivity imageMemberEquality baseClosed instantiate universeEquality inhabitedIsType lambdaFormation_alt axiomEquality equalityIsType2 equalityIsType1 promote_hyp equalityIsType3 functionIsType independent_pairEquality

Latex:
\mforall{}[x:\mBbbN{}  {}\mrightarrow{}  \mBbbQ{}].  \mforall{}[r:\mBbbZ{}].  \mforall{}[k:\mBbbN{}\msupplus{}].  \mforall{}[y:\mBbbQ{}  List].
    (uiff(q-rel(r;q-linear(k;j.x  j;y));q-rel(r;q-linear(k  -  1;j.x  j;y))))  supposing 
          (((x  k)  =  0)  and 
          (k  \mleq{}  ||y||))



Date html generated: 2019_10_16-PM-00_33_37
Last ObjectModification: 2018_10_10-AM-11_05_17

Theory : rationals


Home Index