Step
*
2
1
1
1
1
1
2
1
of Lemma
qabs-qinv
.....assertion.....
1. s : ℚ
2. ¬(s = 0 ∈ ℚ)
3. p : ℤ
4. ¬0 < p
5. q : ℤ
6. 0 < q
7. ¬(q = 0 ∈ ℚ)
8. s = (p/q) ∈ ℚ
9. ¬↑qeq(q;0)
10. ¬((p/q) = 0 ∈ ℚ)
11. ¬(|(p/q)| = 0 ∈ ℚ)
12. 0 < q
⊢ <(-1) * q, p> = <q, (-1) * p> ∈ ℚ
BY
{ ((Fold `mk-rational` 0 THEN (RWO "mk-rational-qdiv" 0 THENA Auto)) THEN CaseNat 0 `p') }
1
1. s : ℚ
2. ¬(s = 0 ∈ ℚ)
3. p : ℤ
4. ¬0 < p
5. q : ℤ
6. 0 < q
7. ¬(q = 0 ∈ ℚ)
8. s = (p/q) ∈ ℚ
9. ¬↑qeq(q;0)
10. ¬((p/q) = 0 ∈ ℚ)
11. ¬(|(p/q)| = 0 ∈ ℚ)
12. 0 < q
13. p = 0 ∈ ℤ
⊢ ((-1) * q/0) = (q/(-1) * 0) ∈ ℚ
2
1. s : ℚ
2. ¬(s = 0 ∈ ℚ)
3. p : ℤ
4. ¬0 < p
5. q : ℤ
6. 0 < q
7. ¬(q = 0 ∈ ℚ)
8. s = (p/q) ∈ ℚ
9. ¬↑qeq(q;0)
10. ¬((p/q) = 0 ∈ ℚ)
11. ¬(|(p/q)| = 0 ∈ ℚ)
12. 0 < q
13. ¬(p = 0 ∈ ℤ)
⊢ ((-1) * q/p) = (q/(-1) * p) ∈ ℚ
Latex:
Latex:
.....assertion.....
1. s : \mBbbQ{}
2. \mneg{}(s = 0)
3. p : \mBbbZ{}
4. \mneg{}0 < p
5. q : \mBbbZ{}
6. 0 < q
7. \mneg{}(q = 0)
8. s = (p/q)
9. \mneg{}\muparrow{}qeq(q;0)
10. \mneg{}((p/q) = 0)
11. \mneg{}(|(p/q)| = 0)
12. 0 < q
\mvdash{} <(-1) * q, p> = <q, (-1) * p>
By
Latex:
((Fold `mk-rational` 0 THEN (RWO "mk-rational-qdiv" 0 THENA Auto)) THEN CaseNat 0 `p')
Home
Index