Nuprl Lemma : qabs-qinv

[s:{s:ℚ| ¬(s 0 ∈ ℚ)} ]. (|1/s| 1/|s| ∈ ℚ)


Proof




Definitions occuring in Statement :  qabs: |r| qinv: 1/r rationals: uall: [x:A]. B[x] not: ¬A set: {x:A| B[x]}  natural_number: $n equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T not: ¬A implies:  Q subtype_rel: A ⊆B false: False prop: cand: c∧ B and: P ∧ Q uimplies: supposing a uiff: uiff(P;Q) all: x:A. B[x] exists: x:A. B[x] nat_plus: + iff: ⇐⇒ Q qabs: |r| callbyvalueall: callbyvalueall has-value: (a)↓ has-valueall: has-valueall(a) qdiv: (r/s) qmul: s qpositive: qpositive(r) qinv: 1/r evalall: evalall(t) ifthenelse: if then else fi  btrue: tt so_lambda: λ2x.t[x] so_apply: x[s] bfalse: ff bool: 𝔹 unit: Unit it: band: p ∧b q satisfiable_int_formula: satisfiable_int_formula(fmla) or: P ∨ Q sq_type: SQType(T) guard: {T} bnot: ¬bb assert: b rev_implies:  Q bor: p ∨bq mk-rational: mk-rational(a;b) int_nzero: -o nequal: a ≠ b ∈  decidable: Dec(P) rev_uimplies: rev_uimplies(P;Q) true: True squash: T
Lemmas referenced :  rationals_wf int-subtype-rationals istype-void qabs_wf equal-wf-T-base qabs-zero q-elim nat_plus_properties iff_weakening_uiff assert_wf qeq_wf2 equal-wf-base int_subtype_base assert-qeq istype-assert not_wf equal_wf qinv_wf valueall-type-has-valueall rationals-valueall-type evalall-reduce int-valueall-type product-valueall-type mul-one lt_int_wf eqtt_to_assert assert_of_lt_int full-omega-unsat intformand_wf intformless_wf itermVar_wf itermConstant_wf istype-int int_formula_prop_and_lemma int_formula_prop_less_lemma int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_wf eqff_to_assert bool_cases_sqequal subtype_base_sq bool_wf bool_subtype_base assert-bnot less_than_wf istype-less_than intformnot_wf int_formula_prop_not_lemma mk-rational_wf intformeq_wf int_formula_prop_eq_lemma nequal_wf mk-rational-qdiv decidable__equal_int qmul-preserves-eq qdiv_wf qmul_wf squash_wf true_wf istype-universe qmul_zero_qrng subtype_rel_self qmul-qdiv-cancel iff_weakening_equal int-equal-in-rationals qmul-mul itermMultiply_wf int_term_value_mul_lemma qmul_over_minus_qrng qmul_assoc qmul_one_qrng
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt cut hypothesis setIsType universeIsType introduction extract_by_obid sqequalRule functionIsType equalityIstype inhabitedIsType hypothesisEquality natural_numberEquality applyEquality thin sqequalHypSubstitution independent_pairFormation because_Cache baseClosed isectElimination voidElimination independent_functionElimination lambdaFormation rename setElimination independent_isectElimination productElimination dependent_functionElimination lambdaFormation_alt closedConclusion baseApply sqequalBase equalitySymmetry equalityTransitivity hyp_replacement applyLambdaEquality functionEquality callbyvalueReduce sqleReflexivity isintReduceTrue minusEquality intEquality productEquality lambdaEquality_alt independent_pairEquality unionElimination equalityElimination approximateComputation dependent_pairFormation_alt int_eqEquality Error :memTop,  promote_hyp instantiate cumulativity dependent_set_memberEquality_alt multiplyEquality imageElimination universeEquality imageMemberEquality

Latex:
\mforall{}[s:\{s:\mBbbQ{}|  \mneg{}(s  =  0)\}  ].  (|1/s|  =  1/|s|)



Date html generated: 2020_05_20-AM-09_16_25
Last ObjectModification: 2019_12_31-PM-06_30_43

Theory : rationals


Home Index