Nuprl Lemma : mk-rational-qdiv
∀[a,b:ℤ].  (mk-rational(a;b) ~ (a/b))
Proof
Definitions occuring in Statement : 
qdiv: (r/s)
, 
mk-rational: mk-rational(a;b)
, 
uall: ∀[x:A]. B[x]
, 
int: ℤ
, 
sqequal: s ~ t
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
qdiv: (r/s)
, 
mk-rational: mk-rational(a;b)
, 
qinv: 1/r
, 
uimplies: b supposing a
, 
callbyvalueall: callbyvalueall, 
has-value: (a)↓
, 
has-valueall: has-valueall(a)
, 
ifthenelse: if b then t else f fi 
, 
btrue: tt
, 
qmul: r * s
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
implies: P 
⇒ Q
, 
all: ∀x:A. B[x]
, 
bfalse: ff
Lemmas referenced : 
valueall-type-has-valueall, 
int-valueall-type, 
evalall-reduce, 
product-valueall-type, 
mul-one
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
intEquality, 
independent_isectElimination, 
hypothesis, 
hypothesisEquality, 
callbyvalueReduce, 
because_Cache, 
isintReduceTrue, 
productEquality, 
lambdaEquality, 
independent_functionElimination, 
lambdaFormation, 
independent_pairEquality, 
natural_numberEquality, 
sqequalAxiom, 
isect_memberEquality
Latex:
\mforall{}[a,b:\mBbbZ{}].    (mk-rational(a;b)  \msim{}  (a/b))
Date html generated:
2016_05_15-PM-10_39_21
Last ObjectModification:
2015_12_27-PM-07_59_12
Theory : rationals
Home
Index