Nuprl Lemma : mk-rational-qdiv

[a,b:ℤ].  (mk-rational(a;b) (a/b))


Proof




Definitions occuring in Statement :  qdiv: (r/s) mk-rational: mk-rational(a;b) uall: [x:A]. B[x] int: sqequal: t
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T qdiv: (r/s) mk-rational: mk-rational(a;b) qinv: 1/r uimplies: supposing a callbyvalueall: callbyvalueall has-value: (a)↓ has-valueall: has-valueall(a) ifthenelse: if then else fi  btrue: tt qmul: s so_lambda: λ2x.t[x] so_apply: x[s] implies:  Q all: x:A. B[x] bfalse: ff
Lemmas referenced :  valueall-type-has-valueall int-valueall-type evalall-reduce product-valueall-type mul-one
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule lemma_by_obid sqequalHypSubstitution isectElimination thin intEquality independent_isectElimination hypothesis hypothesisEquality callbyvalueReduce because_Cache isintReduceTrue productEquality lambdaEquality independent_functionElimination lambdaFormation independent_pairEquality natural_numberEquality sqequalAxiom isect_memberEquality

Latex:
\mforall{}[a,b:\mBbbZ{}].    (mk-rational(a;b)  \msim{}  (a/b))



Date html generated: 2016_05_15-PM-10_39_21
Last ObjectModification: 2015_12_27-PM-07_59_12

Theory : rationals


Home Index