Step
*
1
1
1
of Lemma
qexp-difference-factor
.....equality.....
1. a : ℚ
2. b : ℚ
3. n : ℕ
⊢ Σ0 ≤ i < n. (a ↑ i * b ↑ n - i) * a = Σ0 + 1 ≤ i < n + 1. (a ↑ i * b ↑ n - i) * b ∈ ℚ
BY
{ ((InstLemma `sum_shift_q` [⌜0⌝;⌜n⌝;⌜λ2i.(a ↑ i * b ↑ n - i) * a⌝;⌜1⌝]⋅ THENA Auto) THEN (RWO "-1" 0 THENA Auto))⋅ }
1
1. a : ℚ
2. b : ℚ
3. n : ℕ
4. Σ0 ≤ j < n. (a ↑ j * b ↑ n - j) * a = Σ0 + 1 ≤ j < n + 1. (a ↑ j - 1 * b ↑ n - j - 1) * a ∈ ℚ
⊢ Σ0 + 1 ≤ i < n + 1. (a ↑ i - 1 * b ↑ n - i - 1) * a = Σ0 + 1 ≤ i < n + 1. (a ↑ i * b ↑ n - i) * b ∈ ℚ
Latex:
Latex:
.....equality.....
1. a : \mBbbQ{}
2. b : \mBbbQ{}
3. n : \mBbbN{}
\mvdash{} \mSigma{}0 \mleq{} i < n. (a \muparrow{} i * b \muparrow{} n - i) * a = \mSigma{}0 + 1 \mleq{} i < n + 1. (a \muparrow{} i * b \muparrow{} n - i) * b
By
Latex:
((InstLemma `sum\_shift\_q` [\mkleeneopen{}0\mkleeneclose{};\mkleeneopen{}n\mkleeneclose{};\mkleeneopen{}\mlambda{}\msubtwo{}i.(a \muparrow{} i * b \muparrow{} n - i) * a\mkleeneclose{};\mkleeneopen{}1\mkleeneclose{}]\mcdot{} THENA Auto)
THEN (RWO "-1" 0 THENA Auto)
)\mcdot{}
Home
Index