Nuprl Lemma : qexp-difference-factor
∀[a,b:ℚ].  ∀n:ℕ. ((a ↑ n - b ↑ n) = ((a - b) * Σ0 ≤ i < n. a ↑ i * b ↑ n - i + 1) ∈ ℚ)
Proof
Definitions occuring in Statement : 
qexp: r ↑ n
, 
qsum: Σa ≤ j < b. E[j]
, 
qsub: r - s
, 
qmul: r * s
, 
rationals: ℚ
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
subtract: n - m
, 
add: n + m
, 
natural_number: $n
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
all: ∀x:A. B[x]
, 
nat: ℕ
, 
ge: i ≥ j 
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
uimplies: b supposing a
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
false: False
, 
implies: P 
⇒ Q
, 
not: ¬A
, 
top: Top
, 
and: P ∧ Q
, 
prop: ℙ
, 
subtype_rel: A ⊆r B
, 
so_lambda: λ2x.t[x]
, 
le: A ≤ B
, 
less_than': less_than'(a;b)
, 
int_seg: {i..j-}
, 
guard: {T}
, 
lelt: i ≤ j < k
, 
so_apply: x[s]
, 
true: True
, 
sq_type: SQType(T)
, 
qsub: r - s
, 
squash: ↓T
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
nat_plus: ℕ+
, 
uiff: uiff(P;Q)
, 
subtract: n - m
, 
qadd: r + s
, 
callbyvalueall: callbyvalueall, 
evalall: evalall(t)
, 
ifthenelse: if b then t else f fi 
, 
btrue: tt
Lemmas referenced : 
nat_wf, 
rationals_wf, 
qadd_wf, 
qexp_wf, 
nat_properties, 
decidable__le, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermAdd_wf, 
itermVar_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_add_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
le_wf, 
qmul_wf, 
int-subtype-rationals, 
qsum_wf, 
int_seg_subtype_nat, 
false_wf, 
subtract_wf, 
int_seg_properties, 
itermSubtract_wf, 
intformless_wf, 
int_term_value_subtract_lemma, 
int_formula_prop_less_lemma, 
int_seg_wf, 
decidable__lt, 
add-subtract-cancel, 
subtype_base_sq, 
int_subtype_base, 
decidable__equal_int, 
intformeq_wf, 
int_formula_prop_eq_lemma, 
equal_wf, 
squash_wf, 
true_wf, 
qmul_over_plus_qrng, 
qmul_over_minus_qrng, 
qmul_comm_qrng, 
iff_weakening_equal, 
prod_sum_r_q, 
sum_unroll_hi_q, 
sum_unroll_lo_q, 
qexp-zero, 
sum_shift_q, 
less_than_wf, 
not-lt-2, 
condition-implies-le, 
add-commutes, 
minus-add, 
minus-zero, 
zero-add, 
add_functionality_wrt_le, 
le-add-cancel, 
exp_unroll_q, 
qmul_assoc_qrng, 
qmul_ac_1_qrng, 
minus-one-mul, 
minus-one-mul-top, 
add-associates, 
add-zero, 
add-swap, 
qmul_one_qrng, 
mon_assoc_q, 
qadd_comm_q, 
qadd_ac_1_q, 
qadd_inv_assoc_q, 
qsub_wf, 
exp_zero_q, 
sum_unroll_base_q, 
qmul_zero_qrng, 
mon_ident_q, 
subtract-add-cancel, 
itermMultiply_wf, 
int_term_value_mul_lemma
Rules used in proof : 
cut, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
lambdaFormation, 
hypothesis, 
extract_by_obid, 
sqequalRule, 
sqequalHypSubstitution, 
lambdaEquality, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
axiomEquality, 
because_Cache, 
isect_memberEquality, 
isectElimination, 
dependent_set_memberEquality, 
addEquality, 
setElimination, 
rename, 
natural_numberEquality, 
unionElimination, 
independent_isectElimination, 
dependent_pairFormation, 
int_eqEquality, 
intEquality, 
voidElimination, 
voidEquality, 
independent_pairFormation, 
computeAll, 
minusEquality, 
applyEquality, 
productElimination, 
instantiate, 
cumulativity, 
equalityTransitivity, 
equalitySymmetry, 
independent_functionElimination, 
imageElimination, 
universeEquality, 
imageMemberEquality, 
baseClosed, 
hyp_replacement, 
applyLambdaEquality, 
functionEquality, 
multiplyEquality
Latex:
\mforall{}[a,b:\mBbbQ{}].    \mforall{}n:\mBbbN{}.  ((a  \muparrow{}  n  -  b  \muparrow{}  n)  =  ((a  -  b)  *  \mSigma{}0  \mleq{}  i  <  n.  a  \muparrow{}  i  *  b  \muparrow{}  n  -  i  +  1))
Date html generated:
2018_05_22-AM-00_03_03
Last ObjectModification:
2017_07_26-PM-06_51_19
Theory : rationals
Home
Index