Nuprl Lemma : qexp-difference-factor

[a,b:ℚ].  ∀n:ℕ((a ↑ b ↑ n) ((a b) * Σ0 ≤ i < n. a ↑ b ↑ 1) ∈ ℚ)


Proof




Definitions occuring in Statement :  qexp: r ↑ n qsum: Σa ≤ j < b. E[j] qsub: s qmul: s rationals: nat: uall: [x:A]. B[x] all: x:A. B[x] subtract: m add: m natural_number: $n equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] nat: ge: i ≥  decidable: Dec(P) or: P ∨ Q uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False implies:  Q not: ¬A top: Top and: P ∧ Q prop: subtype_rel: A ⊆B so_lambda: λ2x.t[x] le: A ≤ B less_than': less_than'(a;b) int_seg: {i..j-} guard: {T} lelt: i ≤ j < k so_apply: x[s] true: True sq_type: SQType(T) qsub: s squash: T iff: ⇐⇒ Q rev_implies:  Q nat_plus: + uiff: uiff(P;Q) subtract: m qadd: s callbyvalueall: callbyvalueall evalall: evalall(t) ifthenelse: if then else fi  btrue: tt
Lemmas referenced :  nat_wf rationals_wf qadd_wf qexp_wf nat_properties decidable__le satisfiable-full-omega-tt intformand_wf intformnot_wf intformle_wf itermConstant_wf itermAdd_wf itermVar_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_add_lemma int_term_value_var_lemma int_formula_prop_wf le_wf qmul_wf int-subtype-rationals qsum_wf int_seg_subtype_nat false_wf subtract_wf int_seg_properties itermSubtract_wf intformless_wf int_term_value_subtract_lemma int_formula_prop_less_lemma int_seg_wf decidable__lt add-subtract-cancel subtype_base_sq int_subtype_base decidable__equal_int intformeq_wf int_formula_prop_eq_lemma equal_wf squash_wf true_wf qmul_over_plus_qrng qmul_over_minus_qrng qmul_comm_qrng iff_weakening_equal prod_sum_r_q sum_unroll_hi_q sum_unroll_lo_q qexp-zero sum_shift_q less_than_wf not-lt-2 condition-implies-le add-commutes minus-add minus-zero zero-add add_functionality_wrt_le le-add-cancel exp_unroll_q qmul_assoc_qrng qmul_ac_1_qrng minus-one-mul minus-one-mul-top add-associates add-zero add-swap qmul_one_qrng mon_assoc_q qadd_comm_q qadd_ac_1_q qadd_inv_assoc_q qsub_wf exp_zero_q sum_unroll_base_q qmul_zero_qrng mon_ident_q subtract-add-cancel itermMultiply_wf int_term_value_mul_lemma
Rules used in proof :  cut sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction lambdaFormation hypothesis extract_by_obid sqequalRule sqequalHypSubstitution lambdaEquality dependent_functionElimination thin hypothesisEquality axiomEquality because_Cache isect_memberEquality isectElimination dependent_set_memberEquality addEquality setElimination rename natural_numberEquality unionElimination independent_isectElimination dependent_pairFormation int_eqEquality intEquality voidElimination voidEquality independent_pairFormation computeAll minusEquality applyEquality productElimination instantiate cumulativity equalityTransitivity equalitySymmetry independent_functionElimination imageElimination universeEquality imageMemberEquality baseClosed hyp_replacement applyLambdaEquality functionEquality multiplyEquality

Latex:
\mforall{}[a,b:\mBbbQ{}].    \mforall{}n:\mBbbN{}.  ((a  \muparrow{}  n  -  b  \muparrow{}  n)  =  ((a  -  b)  *  \mSigma{}0  \mleq{}  i  <  n.  a  \muparrow{}  i  *  b  \muparrow{}  n  -  i  +  1))



Date html generated: 2018_05_22-AM-00_03_03
Last ObjectModification: 2017_07_26-PM-06_51_19

Theory : rationals


Home Index