Nuprl Lemma : prod_sum_r_q

[a,b:ℤ].  ∀[E:{a..b-} ⟶ ℚ]. ∀[u:ℚ].  ((Σa ≤ j < b. E[j] u) = Σa ≤ j < b. E[j] u ∈ ℚsupposing a ≤ b


Proof




Definitions occuring in Statement :  qsum: Σa ≤ j < b. E[j] qmul: s rationals: int_seg: {i..j-} uimplies: supposing a uall: [x:A]. B[x] so_apply: x[s] le: A ≤ B function: x:A ⟶ B[x] int: equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T subtype_rel: A ⊆B qrng: <ℚ+*> rng_car: |r| pi1: fst(t) rng_times: * pi2: snd(t) infix_ap: y qsum: Σa ≤ j < b. E[j]
Lemmas referenced :  rng_times_sum_r qrng_wf crng_subtype_rng
Rules used in proof :  cut introduction extract_by_obid sqequalHypSubstitution sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isectElimination thin hypothesis applyEquality sqequalRule

Latex:
\mforall{}[a,b:\mBbbZ{}].
    \mforall{}[E:\{a..b\msupminus{}\}  {}\mrightarrow{}  \mBbbQ{}].  \mforall{}[u:\mBbbQ{}].    ((\mSigma{}a  \mleq{}  j  <  b.  E[j]  *  u)  =  \mSigma{}a  \mleq{}  j  <  b.  E[j]  *  u)  supposing  a  \mleq{}  b



Date html generated: 2020_05_20-AM-09_25_42
Last ObjectModification: 2020_01_28-PM-04_55_26

Theory : rationals


Home Index