Nuprl Lemma : qexp_wf

[r:ℚ]. ∀[n:ℕ].  (r ↑ n ∈ ℚ)


Proof




Definitions occuring in Statement :  qexp: r ↑ n rationals: nat: uall: [x:A]. B[x] member: t ∈ T
Definitions unfolded in proof :  qexp: r ↑ n uall: [x:A]. B[x] member: t ∈ T has-value: (a)↓ uimplies: supposing a nat: so_lambda: λ2x.t[x] so_apply: x[s] nat_plus: + subtype_rel: A ⊆B int_nzero: -o prop: all: x:A. B[x] implies:  Q nequal: a ≠ b ∈  not: ¬A false: False guard: {T} ge: i ≥  satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] top: Top and: P ∧ Q
Lemmas referenced :  equal_wf int_formula_prop_wf int_formula_prop_less_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_eq_lemma int_formula_prop_and_lemma intformless_wf itermConstant_wf itermVar_wf intformeq_wf intformand_wf satisfiable-full-omega-tt nat_properties nat_plus_properties nequal_wf less_than_wf subtype_rel_sets exp_wf3 exp-fastexp rationals_wf mk-rational_wf qrep_wf int-value-type le_wf set-value-type nat_wf value-type-has-value
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation introduction cut callbyvalueReduce lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesis independent_isectElimination intEquality lambdaEquality natural_numberEquality hypothesisEquality spreadEquality because_Cache axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality setElimination rename applyEquality setEquality lambdaFormation dependent_pairFormation int_eqEquality dependent_functionElimination voidElimination voidEquality independent_pairFormation computeAll independent_functionElimination

Latex:
\mforall{}[r:\mBbbQ{}].  \mforall{}[n:\mBbbN{}].    (r  \muparrow{}  n  \mmember{}  \mBbbQ{})



Date html generated: 2016_05_15-PM-11_06_36
Last ObjectModification: 2016_01_16-PM-09_27_30

Theory : rationals


Home Index