Nuprl Lemma : qexp_wf
∀[r:ℚ]. ∀[n:ℕ].  (r ↑ n ∈ ℚ)
Proof
Definitions occuring in Statement : 
qexp: r ↑ n
, 
rationals: ℚ
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
Definitions unfolded in proof : 
qexp: r ↑ n
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
has-value: (a)↓
, 
uimplies: b supposing a
, 
nat: ℕ
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
nat_plus: ℕ+
, 
subtype_rel: A ⊆r B
, 
int_nzero: ℤ-o
, 
prop: ℙ
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
nequal: a ≠ b ∈ T 
, 
not: ¬A
, 
false: False
, 
guard: {T}
, 
ge: i ≥ j 
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
top: Top
, 
and: P ∧ Q
Lemmas referenced : 
equal_wf, 
int_formula_prop_wf, 
int_formula_prop_less_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_eq_lemma, 
int_formula_prop_and_lemma, 
intformless_wf, 
itermConstant_wf, 
itermVar_wf, 
intformeq_wf, 
intformand_wf, 
satisfiable-full-omega-tt, 
nat_properties, 
nat_plus_properties, 
nequal_wf, 
less_than_wf, 
subtype_rel_sets, 
exp_wf3, 
exp-fastexp, 
rationals_wf, 
mk-rational_wf, 
qrep_wf, 
int-value-type, 
le_wf, 
set-value-type, 
nat_wf, 
value-type-has-value
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation, 
introduction, 
cut, 
callbyvalueReduce, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesis, 
independent_isectElimination, 
intEquality, 
lambdaEquality, 
natural_numberEquality, 
hypothesisEquality, 
spreadEquality, 
because_Cache, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
isect_memberEquality, 
setElimination, 
rename, 
applyEquality, 
setEquality, 
lambdaFormation, 
dependent_pairFormation, 
int_eqEquality, 
dependent_functionElimination, 
voidElimination, 
voidEquality, 
independent_pairFormation, 
computeAll, 
independent_functionElimination
Latex:
\mforall{}[r:\mBbbQ{}].  \mforall{}[n:\mBbbN{}].    (r  \muparrow{}  n  \mmember{}  \mBbbQ{})
Date html generated:
2016_05_15-PM-11_06_36
Last ObjectModification:
2016_01_16-PM-09_27_30
Theory : rationals
Home
Index