Nuprl Lemma : exp_zero_q

[e:ℚ]. (e ↑ 1 ∈ ℚ)


Proof




Definitions occuring in Statement :  qexp: r ↑ n rationals: uall: [x:A]. B[x] natural_number: $n equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] qexp: r ↑ n has-value: (a)↓ member: t ∈ T uimplies: supposing a all: x:A. B[x] implies:  Q prop: nat: le: A ≤ B and: P ∧ Q less_than': less_than'(a;b) false: False not: ¬A nat_plus: + top: Top mk-rational: mk-rational(a;b) rationals: so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] b-union: A ⋃ B tunion: x:A.B[x] ifthenelse: if then else fi  bfalse: ff int_nzero: -o true: True nequal: a ≠ b ∈  sq_type: SQType(T) guard: {T} pi2: snd(t) subtype_rel: A ⊆B iff: ⇐⇒ Q rev_implies:  Q uiff: uiff(P;Q) rev_uimplies: rev_uimplies(P;Q) qeq: qeq(r;s) callbyvalueall: callbyvalueall evalall: evalall(t) btrue: tt eq_int: (i =z j) assert: b
Lemmas referenced :  value-type-has-value int-value-type qrep_wf nat_plus_wf equal_wf rationals_wf false_wf le_wf exp0_lemma exp-fastexp quotient-member-eq b-union_wf int_nzero_wf equal-wf-T-base bool_wf qeq_wf qeq-equiv bfalse_wf subtype_base_sq int_subtype_base equal-wf-base true_wf nequal_wf ifthenelse_wf subtype_rel_b-union-left iff_imp_equal_bool qeq_wf2 mk-rational_wf int-subtype-rationals btrue_wf assert-qeq assert_wf iff_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation cut sqequalRule callbyvalueReduce introduction extract_by_obid sqequalHypSubstitution isectElimination thin intEquality independent_isectElimination hypothesis natural_numberEquality hypothesisEquality productEquality lambdaFormation productElimination equalityTransitivity equalitySymmetry dependent_functionElimination independent_functionElimination dependent_set_memberEquality independent_pairFormation setElimination rename isect_memberEquality voidElimination voidEquality lambdaEquality baseClosed imageMemberEquality dependent_pairEquality independent_pairEquality because_Cache addLevel instantiate cumulativity universeEquality applyEquality impliesFunctionality

Latex:
\mforall{}[e:\mBbbQ{}].  (e  \muparrow{}  0  =  1)



Date html generated: 2018_05_21-PM-11_59_11
Last ObjectModification: 2017_07_26-PM-06_48_32

Theory : rationals


Home Index