Nuprl Lemma : qless_irreflexivity_qorder

[a:ℚ]. False supposing a < a


Proof




Definitions occuring in Statement :  qless: r < s rationals: uimplies: supposing a uall: [x:A]. B[x] false: False
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T subtype_rel: A ⊆B qadd_grp: <ℚ+> grp_car: |g| pi1: fst(t) qless: r < s
Lemmas referenced :  grp_lt_irreflexivity qadd_grp_wf2 ocgrp_subtype_ocmon
Rules used in proof :  cut introduction extract_by_obid sqequalHypSubstitution sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isectElimination thin hypothesis applyEquality sqequalRule

Latex:
\mforall{}[a:\mBbbQ{}].  False  supposing  a  <  a



Date html generated: 2020_05_20-AM-09_14_34
Last ObjectModification: 2020_02_03-PM-02_50_22

Theory : rationals


Home Index