Nuprl Lemma : qless_trans_qorder

[a,b,c:ℚ].  (a < c) supposing (b < and a < b)


Proof




Definitions occuring in Statement :  qless: r < s rationals: uimplies: supposing a uall: [x:A]. B[x]
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T subtype_rel: A ⊆B qadd_grp: <ℚ+> grp_car: |g| pi1: fst(t) qless: r < s
Lemmas referenced :  grp_lt_trans qadd_grp_wf2 ocgrp_subtype_ocmon
Rules used in proof :  cut introduction extract_by_obid sqequalHypSubstitution sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isectElimination thin hypothesis applyEquality sqequalRule

Latex:
\mforall{}[a,b,c:\mBbbQ{}].    (a  <  c)  supposing  (b  <  c  and  a  <  b)



Date html generated: 2020_05_20-AM-09_14_30
Last ObjectModification: 2020_01_25-AM-11_44_49

Theory : rationals


Home Index