Step
*
of Lemma
qsum-int
∀[i,j:ℤ]. ∀[X:{i..j-} ⟶ ℤ]. (Σi ≤ x < j. X[x] ∈ ℤ)
BY
{ xxxAssert ⌜∀d:ℕ. ∀i,j:ℤ. ((i ≤ j)
⇒ (j ≤ (i + d))
⇒ (∀X:{i..j-} ⟶ ℤ. (Σi ≤ x < j. X[x] ∈ ℤ)))⌝⋅xxx }
1
.....assertion.....
∀d:ℕ. ∀i,j:ℤ. ((i ≤ j)
⇒ (j ≤ (i + d))
⇒ (∀X:{i..j-} ⟶ ℤ. (Σi ≤ x < j. X[x] ∈ ℤ)))
2
1. ∀d:ℕ. ∀i,j:ℤ. ((i ≤ j)
⇒ (j ≤ (i + d))
⇒ (∀X:{i..j-} ⟶ ℤ. (Σi ≤ x < j. X[x] ∈ ℤ)))
⊢ ∀[i,j:ℤ]. ∀[X:{i..j-} ⟶ ℤ]. (Σi ≤ x < j. X[x] ∈ ℤ)
Latex:
Latex:
\mforall{}[i,j:\mBbbZ{}]. \mforall{}[X:\{i..j\msupminus{}\} {}\mrightarrow{} \mBbbZ{}]. (\mSigma{}i \mleq{} x < j. X[x] \mmember{} \mBbbZ{})
By
Latex:
xxxAssert \mkleeneopen{}\mforall{}d:\mBbbN{}. \mforall{}i,j:\mBbbZ{}. ((i \mleq{} j) {}\mRightarrow{} (j \mleq{} (i + d)) {}\mRightarrow{} (\mforall{}X:\{i..j\msupminus{}\} {}\mrightarrow{} \mBbbZ{}. (\mSigma{}i \mleq{} x < j. X[x] \mmember{} \mBbbZ{})))\mkleeneclose{}
\mcdot{}xxx
Home
Index