Step
*
1
of Lemma
qsum-int
.....assertion.....
∀d:ℕ. ∀i,j:ℤ. ((i ≤ j)
⇒ (j ≤ (i + d))
⇒ (∀X:{i..j-} ⟶ ℤ. (Σi ≤ x < j. X[x] ∈ ℤ)))
BY
{ (InductionOnNat
THEN Auto
THEN Try ((RepUR ``qsum rng_sum mon_itop`` 0
THEN RecUnfold `itop` 0
THEN SplitOnConclITE
THEN Auto'
THEN (Assert False BY
Complete (Auto'))
THEN Auto))⋅) }
1
1. d : ℤ
2. 0 < d
3. ∀i,j:ℤ. ((i ≤ j)
⇒ (j ≤ (i + (d - 1)))
⇒ (∀X:{i..j-} ⟶ ℤ. (Σi ≤ x < j. X[x] ∈ ℤ)))
4. i : ℤ
5. j : ℤ
6. i ≤ j
7. j ≤ (i + d)
8. X : {i..j-} ⟶ ℤ
⊢ Σi ≤ x < j. X[x] ∈ ℤ
Latex:
Latex:
.....assertion.....
\mforall{}d:\mBbbN{}. \mforall{}i,j:\mBbbZ{}. ((i \mleq{} j) {}\mRightarrow{} (j \mleq{} (i + d)) {}\mRightarrow{} (\mforall{}X:\{i..j\msupminus{}\} {}\mrightarrow{} \mBbbZ{}. (\mSigma{}i \mleq{} x < j. X[x] \mmember{} \mBbbZ{})))
By
Latex:
(InductionOnNat
THEN Auto
THEN Try ((RepUR ``qsum rng\_sum mon\_itop`` 0
THEN RecUnfold `itop` 0
THEN SplitOnConclITE
THEN Auto'
THEN (Assert False BY
Complete (Auto'))
THEN Auto))\mcdot{})
Home
Index