Step
*
1
of Lemma
sbhomout_wf
1. u : ℕ2
2. v : ℕ2 List
3. ∀x:ℕ. ∀[a,b,c,d:ℕ]. (((a + b + c + d) ≤ x)
⇒ 0 < a + b
⇒ 0 < c + d
⇒ (sbhomout(a;b;c;d;v) ∈ ℕ2 List))
4. x : ℤ
5. 0 < x
6. ∀[a,b,c,d:ℕ]. (((a + b + c + d) ≤ (x - 1))
⇒ 0 < a + b
⇒ 0 < c + d
⇒ (sbhomout(a;b;c;d;[u / v]) ∈ ℕ2 List))
7. a : ℕ
8. b : ℕ
9. c : ℕ
10. d : ℕ
11. (a + b + c + d) ≤ x
12. 0 < a + b
13. 0 < c + d
14. mtge1(a;b;c;d) ∈ 𝔹
15. ((c ≤ a) ∧ d < b) ∨ (c < a ∧ (d ≤ b))
⊢ sbhomout(a - c;b - d;c;d;[u / v]) ∈ ℕ2 List
BY
{ (BackThruSomeHyp THEN Auto') }
Latex:
Latex:
1. u : \mBbbN{}2
2. v : \mBbbN{}2 List
3. \mforall{}x:\mBbbN{}
\mforall{}[a,b,c,d:\mBbbN{}].
(((a + b + c + d) \mleq{} x) {}\mRightarrow{} 0 < a + b {}\mRightarrow{} 0 < c + d {}\mRightarrow{} (sbhomout(a;b;c;d;v) \mmember{} \mBbbN{}2 List))
4. x : \mBbbZ{}
5. 0 < x
6. \mforall{}[a,b,c,d:\mBbbN{}].
(((a + b + c + d) \mleq{} (x - 1))
{}\mRightarrow{} 0 < a + b
{}\mRightarrow{} 0 < c + d
{}\mRightarrow{} (sbhomout(a;b;c;d;[u / v]) \mmember{} \mBbbN{}2 List))
7. a : \mBbbN{}
8. b : \mBbbN{}
9. c : \mBbbN{}
10. d : \mBbbN{}
11. (a + b + c + d) \mleq{} x
12. 0 < a + b
13. 0 < c + d
14. mtge1(a;b;c;d) \mmember{} \mBbbB{}
15. ((c \mleq{} a) \mwedge{} d < b) \mvee{} (c < a \mwedge{} (d \mleq{} b))
\mvdash{} sbhomout(a - c;b - d;c;d;[u / v]) \mmember{} \mBbbN{}2 List
By
Latex:
(BackThruSomeHyp THEN Auto')
Home
Index