Nuprl Lemma : sbhomout_wf

[a,b,c,d:ℕ].  (0 <  0 <  (∀[L:ℕList]. (sbhomout(a;b;c;d;L) ∈ ℕList)))


Proof




Definitions occuring in Statement :  sbhomout: sbhomout(a;b;c;d;L) list: List int_seg: {i..j-} nat: less_than: a < b uall: [x:A]. B[x] implies:  Q member: t ∈ T add: m natural_number: $n
Definitions unfolded in proof :  all: x:A. B[x] uall: [x:A]. B[x] member: t ∈ T nat: implies:  Q false: False ge: i ≥  uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] not: ¬A top: Top and: P ∧ Q prop: subtype_rel: A ⊆B guard: {T} or: P ∨ Q sbhomout: sbhomout(a;b;c;d;L) nil: [] it: nat_plus: + le: A ≤ B so_lambda: λ2x.t[x] so_apply: x[s] uiff: uiff(P;Q) cons: [a b] colength: colength(L) so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] decidable: Dec(P) sq_type: SQType(T) less_than: a < b squash: T less_than': less_than'(a;b) int_seg: {i..j-} lelt: i ≤ j < k bool: 𝔹 unit: Unit btrue: tt ifthenelse: if then else fi  has-value: (a)↓ true: True mtge1: mtge1(a;b;c;d) bfalse: ff bnot: ¬bb assert: b iff: ⇐⇒ Q rev_implies:  Q
Lemmas referenced :  nat_properties satisfiable-full-omega-tt intformand_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf int_formula_prop_and_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf ge_wf less_than_wf le_wf nat_wf equal-wf-T-base colength_wf_list int_seg_wf less_than_transitivity1 less_than_irreflexivity list_wf list-cases itermAdd_wf int_term_value_add_lemma sbcode_wf add-is-int-iff set_subtype_base int_subtype_base product_subtype_list spread_cons_lemma intformeq_wf int_formula_prop_eq_lemma decidable__le intformnot_wf int_formula_prop_not_lemma equal_wf subtract_wf itermSubtract_wf int_term_value_subtract_lemma subtype_base_sq decidable__equal_int int_seg_properties mtge1_wf bool_wf eqtt_to_assert value-type-has-value int-value-type cons_wf false_wf lelt_wf eqff_to_assert bool_cases_sqequal bool_subtype_base assert-bnot assert_wf bor_wf band_wf le_int_wf lt_int_wf or_wf iff_transitivity iff_weakening_uiff assert_of_bor assert_of_band assert_of_le_int assert_of_lt_int intformor_wf int_formula_prop_or_lemma decidable__lt itermMultiply_wf int_term_value_mul_lemma
Rules used in proof :  cut sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation thin introduction extract_by_obid sqequalHypSubstitution isectElimination hypothesisEquality hypothesis setElimination rename sqequalRule intWeakElimination natural_numberEquality independent_isectElimination dependent_pairFormation lambdaEquality int_eqEquality intEquality dependent_functionElimination isect_memberEquality voidElimination voidEquality independent_pairFormation computeAll independent_functionElimination axiomEquality equalityTransitivity equalitySymmetry addEquality applyEquality because_Cache unionElimination isect_memberFormation dependent_set_memberEquality productElimination baseApply closedConclusion baseClosed promote_hyp hypothesis_subsumption applyLambdaEquality instantiate cumulativity imageElimination equalityElimination callbyvalueReduce imageMemberEquality productEquality orFunctionality multiplyEquality

Latex:
\mforall{}[a,b,c,d:\mBbbN{}].    (0  <  a  +  b  {}\mRightarrow{}  0  <  c  +  d  {}\mRightarrow{}  (\mforall{}[L:\mBbbN{}2  List].  (sbhomout(a;b;c;d;L)  \mmember{}  \mBbbN{}2  List)))



Date html generated: 2018_05_21-PM-11_41_10
Last ObjectModification: 2017_07_26-PM-06_42_51

Theory : rationals


Home Index