Nuprl Lemma : sbhomout_wf
∀[a,b,c,d:ℕ]. (0 < a + b
⇒ 0 < c + d
⇒ (∀[L:ℕ2 List]. (sbhomout(a;b;c;d;L) ∈ ℕ2 List)))
Proof
Definitions occuring in Statement :
sbhomout: sbhomout(a;b;c;d;L)
,
list: T List
,
int_seg: {i..j-}
,
nat: ℕ
,
less_than: a < b
,
uall: ∀[x:A]. B[x]
,
implies: P
⇒ Q
,
member: t ∈ T
,
add: n + m
,
natural_number: $n
Definitions unfolded in proof :
all: ∀x:A. B[x]
,
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
nat: ℕ
,
implies: P
⇒ Q
,
false: False
,
ge: i ≥ j
,
uimplies: b supposing a
,
satisfiable_int_formula: satisfiable_int_formula(fmla)
,
exists: ∃x:A. B[x]
,
not: ¬A
,
top: Top
,
and: P ∧ Q
,
prop: ℙ
,
subtype_rel: A ⊆r B
,
guard: {T}
,
or: P ∨ Q
,
sbhomout: sbhomout(a;b;c;d;L)
,
nil: []
,
it: ⋅
,
nat_plus: ℕ+
,
le: A ≤ B
,
so_lambda: λ2x.t[x]
,
so_apply: x[s]
,
uiff: uiff(P;Q)
,
cons: [a / b]
,
colength: colength(L)
,
so_lambda: λ2x y.t[x; y]
,
so_apply: x[s1;s2]
,
decidable: Dec(P)
,
sq_type: SQType(T)
,
less_than: a < b
,
squash: ↓T
,
less_than': less_than'(a;b)
,
int_seg: {i..j-}
,
lelt: i ≤ j < k
,
bool: 𝔹
,
unit: Unit
,
btrue: tt
,
ifthenelse: if b then t else f fi
,
has-value: (a)↓
,
true: True
,
mtge1: mtge1(a;b;c;d)
,
bfalse: ff
,
bnot: ¬bb
,
assert: ↑b
,
iff: P
⇐⇒ Q
,
rev_implies: P
⇐ Q
Lemmas referenced :
nat_properties,
satisfiable-full-omega-tt,
intformand_wf,
intformle_wf,
itermConstant_wf,
itermVar_wf,
intformless_wf,
int_formula_prop_and_lemma,
int_formula_prop_le_lemma,
int_term_value_constant_lemma,
int_term_value_var_lemma,
int_formula_prop_less_lemma,
int_formula_prop_wf,
ge_wf,
less_than_wf,
le_wf,
nat_wf,
equal-wf-T-base,
colength_wf_list,
int_seg_wf,
less_than_transitivity1,
less_than_irreflexivity,
list_wf,
list-cases,
itermAdd_wf,
int_term_value_add_lemma,
sbcode_wf,
add-is-int-iff,
set_subtype_base,
int_subtype_base,
product_subtype_list,
spread_cons_lemma,
intformeq_wf,
int_formula_prop_eq_lemma,
decidable__le,
intformnot_wf,
int_formula_prop_not_lemma,
equal_wf,
subtract_wf,
itermSubtract_wf,
int_term_value_subtract_lemma,
subtype_base_sq,
decidable__equal_int,
int_seg_properties,
mtge1_wf,
bool_wf,
eqtt_to_assert,
value-type-has-value,
int-value-type,
cons_wf,
false_wf,
lelt_wf,
eqff_to_assert,
bool_cases_sqequal,
bool_subtype_base,
assert-bnot,
assert_wf,
bor_wf,
band_wf,
le_int_wf,
lt_int_wf,
or_wf,
iff_transitivity,
iff_weakening_uiff,
assert_of_bor,
assert_of_band,
assert_of_le_int,
assert_of_lt_int,
intformor_wf,
int_formula_prop_or_lemma,
decidable__lt,
itermMultiply_wf,
int_term_value_mul_lemma
Rules used in proof :
cut,
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
lambdaFormation,
thin,
introduction,
extract_by_obid,
sqequalHypSubstitution,
isectElimination,
hypothesisEquality,
hypothesis,
setElimination,
rename,
sqequalRule,
intWeakElimination,
natural_numberEquality,
independent_isectElimination,
dependent_pairFormation,
lambdaEquality,
int_eqEquality,
intEquality,
dependent_functionElimination,
isect_memberEquality,
voidElimination,
voidEquality,
independent_pairFormation,
computeAll,
independent_functionElimination,
axiomEquality,
equalityTransitivity,
equalitySymmetry,
addEquality,
applyEquality,
because_Cache,
unionElimination,
isect_memberFormation,
dependent_set_memberEquality,
productElimination,
baseApply,
closedConclusion,
baseClosed,
promote_hyp,
hypothesis_subsumption,
applyLambdaEquality,
instantiate,
cumulativity,
imageElimination,
equalityElimination,
callbyvalueReduce,
imageMemberEquality,
productEquality,
orFunctionality,
multiplyEquality
Latex:
\mforall{}[a,b,c,d:\mBbbN{}]. (0 < a + b {}\mRightarrow{} 0 < c + d {}\mRightarrow{} (\mforall{}[L:\mBbbN{}2 List]. (sbhomout(a;b;c;d;L) \mmember{} \mBbbN{}2 List)))
Date html generated:
2018_05_21-PM-11_41_10
Last ObjectModification:
2017_07_26-PM-06_42_51
Theory : rationals
Home
Index