Nuprl Lemma : sbcode_wf

[m,n:ℕ+].  (sbcode(m;n) ∈ ℕList)


Proof




Definitions occuring in Statement :  sbcode: sbcode(m;n) list: List int_seg: {i..j-} nat_plus: + uall: [x:A]. B[x] member: t ∈ T natural_number: $n
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] nat: implies:  Q false: False ge: i ≥  uimplies: supposing a not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] top: Top and: P ∧ Q prop: guard: {T} int_seg: {i..j-} lelt: i ≤ j < k decidable: Dec(P) or: P ∨ Q subtype_rel: A ⊆B so_lambda: λ2x.t[x] so_apply: x[s] sq_type: SQType(T) sbcode: sbcode(m;n) bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) less_than: a < b less_than': less_than'(a;b) true: True squash: T le: A ≤ B bfalse: ff bnot: ¬bb ifthenelse: if then else fi  assert: b nat_plus: +
Lemmas referenced :  nat_properties full-omega-unsat intformand_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf int_formula_prop_and_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf ge_wf less_than_wf nat_wf int_seg_wf int_seg_properties decidable__le subtract_wf intformnot_wf itermSubtract_wf int_formula_prop_not_lemma int_term_value_subtract_lemma decidable__equal_int subtype_base_sq set_subtype_base int_subtype_base intformeq_wf int_formula_prop_eq_lemma decidable__lt lelt_wf subtype_rel_self le_wf lt_int_wf bool_wf eqtt_to_assert assert_of_lt_int top_wf cons_wf false_wf eqff_to_assert equal_wf bool_cases_sqequal bool_subtype_base assert-bnot not_functionality_wrt_uiff assert_wf nil_wf itermAdd_wf int_term_value_add_lemma nat_plus_subtype_nat nat_plus_properties nat_plus_wf
Rules used in proof :  cut sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction thin lambdaFormation extract_by_obid sqequalHypSubstitution isectElimination hypothesisEquality hypothesis setElimination rename sqequalRule intWeakElimination natural_numberEquality independent_isectElimination approximateComputation independent_functionElimination dependent_pairFormation lambdaEquality int_eqEquality intEquality dependent_functionElimination isect_memberEquality voidElimination voidEquality independent_pairFormation axiomEquality equalityTransitivity equalitySymmetry because_Cache productElimination unionElimination applyEquality instantiate applyLambdaEquality dependent_set_memberEquality hypothesis_subsumption cumulativity equalityElimination lessCases axiomSqEquality imageMemberEquality baseClosed imageElimination promote_hyp addEquality

Latex:
\mforall{}[m,n:\mBbbN{}\msupplus{}].    (sbcode(m;n)  \mmember{}  \mBbbN{}2  List)



Date html generated: 2019_10_16-AM-11_46_55
Last ObjectModification: 2018_08_29-PM-02_20_41

Theory : rationals


Home Index