Nuprl Lemma : mtge1_wf
∀[a,b,c,d:ℤ].  (mtge1(a;b;c;d) ∈ 𝔹)
Proof
Definitions occuring in Statement : 
mtge1: mtge1(a;b;c;d)
, 
bool: 𝔹
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
int: ℤ
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
mtge1: mtge1(a;b;c;d)
Lemmas referenced : 
bor_wf, 
band_wf, 
le_int_wf, 
lt_int_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
intEquality, 
isect_memberEquality, 
because_Cache
Latex:
\mforall{}[a,b,c,d:\mBbbZ{}].    (mtge1(a;b;c;d)  \mmember{}  \mBbbB{})
Date html generated:
2016_05_15-PM-10_34_32
Last ObjectModification:
2015_12_27-PM-08_01_31
Theory : rationals
Home
Index