Step
*
1
4
of Lemma
presheaf-elements_wf
1. C : SmallCategory
2. P : Functor(op-cat(C);TypeCat)
⊢ ∀Aa,Bb,z,Dd:A:cat-ob(op-cat(C)) × (P A). ∀f:let A,a = Aa
in let B,b = Bb
in {f:cat-arrow(op-cat(C)) B A| (P B A f b) = a ∈ (P A)} .
∀g:let A,a = Bb
in let B,b = z
in {f:cat-arrow(op-cat(C)) B A| (P B A f b) = a ∈ (P A)} . ∀h:let A,a = z
in let B,b = Dd
in {f:cat-arrow(op-cat(C)) B A|
(P B A f b) = a ∈ (P A)} .
((cat-comp(op-cat(C)) (fst(Dd)) (fst(z)) (fst(Aa)) h (cat-comp(op-cat(C)) (fst(z)) (fst(Bb)) (fst(Aa)) g f))
= (cat-comp(op-cat(C)) (fst(Dd)) (fst(Bb)) (fst(Aa)) (cat-comp(op-cat(C)) (fst(Dd)) (fst(z)) (fst(Bb)) h g) f)
∈ let A,a = Aa
in let B,b = Dd
in {f:cat-arrow(op-cat(C)) B A| (P B A f b) = a ∈ (P A)} )
BY
{ (RepeatFor 4 (((D 0 THENA Auto) THEN D -1)) THEN Reduce 0 THEN RepeatFor 3 ((At ⌜Type⌝ (D 0)⋅ THENA Auto))) }
1
1. C : SmallCategory
2. P : Functor(op-cat(C);TypeCat)
3. A : cat-ob(op-cat(C))
4. A1 : P A
5. A2 : cat-ob(op-cat(C))
6. B1 : P A2
7. A3 : cat-ob(op-cat(C))
8. z1 : P A3
9. A4 : cat-ob(op-cat(C))
10. D1 : P A4
11. f : {f:cat-arrow(op-cat(C)) A2 A| (P A2 A f B1) = A1 ∈ (P A)}
12. g : {f:cat-arrow(op-cat(C)) A3 A2| (P A3 A2 f z1) = B1 ∈ (P A2)}
13. h : {f:cat-arrow(op-cat(C)) A4 A3| (P A4 A3 f D1) = z1 ∈ (P A3)}
⊢ (cat-comp(op-cat(C)) A4 A3 A h (cat-comp(op-cat(C)) A3 A2 A g f))
= (cat-comp(op-cat(C)) A4 A2 A (cat-comp(op-cat(C)) A4 A3 A2 h g) f)
∈ {f:cat-arrow(op-cat(C)) A4 A| (P A4 A f D1) = A1 ∈ (P A)}
Latex:
Latex:
1. C : SmallCategory
2. P : Functor(op-cat(C);TypeCat)
\mvdash{} \mforall{}Aa,Bb,z,Dd:A:cat-ob(op-cat(C)) \mtimes{} (P A). \mforall{}f:let A,a = Aa
in let B,b = Bb
in \{f:cat-arrow(op-cat(C)) B A| (P B A f b) = a\} .
\mforall{}g:let A,a = Bb
in let B,b = z
in \{f:cat-arrow(op-cat(C)) B A| (P B A f b) = a\} . \mforall{}h:let A,a = z
in let B,b = Dd
in \{f:cat-arrow(op-cat(C)) B A|
(P B A f b) = a\} .
((cat-comp(op-cat(C)) (fst(Dd)) (fst(z)) (fst(Aa)) h
(cat-comp(op-cat(C)) (fst(z)) (fst(Bb)) (fst(Aa)) g f))
= (cat-comp(op-cat(C)) (fst(Dd)) (fst(Bb)) (fst(Aa))
(cat-comp(op-cat(C)) (fst(Dd)) (fst(z)) (fst(Bb)) h g)
f))
By
Latex:
(RepeatFor 4 (((D 0 THENA Auto) THEN D -1))
THEN Reduce 0
THEN RepeatFor 3 ((At \mkleeneopen{}Type\mkleeneclose{} (D 0)\mcdot{} THENA Auto)))
Home
Index