Nuprl Lemma : presheaf-elements_wf

C:SmallCategory. ∀P:Presheaf(C).  (el(P) ∈ SmallCategory)


Proof




Definitions occuring in Statement :  presheaf-elements: el(P) presheaf: Presheaf(C) small-category: SmallCategory all: x:A. B[x] member: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T presheaf: Presheaf(C) uall: [x:A]. B[x] subtype_rel: A ⊆B cat-ob: cat-ob(C) pi1: fst(t) type-cat: TypeCat cat-arrow: cat-arrow(C) pi2: snd(t) prop: presheaf-elements: el(P) so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] so_lambda: λ2x.t[x] so_apply: x[s] so_lambda: so_lambda5 so_apply: x[s1;s2;s3;s4;s5] uimplies: supposing a top: Top compose: g and: P ∧ Q guard: {T} squash: T true: True
Lemmas referenced :  presheaf_wf small-category_wf cat-ob_wf op-cat_wf functor-ob_wf small-category-subtype type-cat_wf subtype_rel_self cat-arrow_wf equal_wf functor-arrow_wf mk-cat_wf cat-id_wf functor-arrow-id cat_arrow_triple_lemma istype-void cat_id_tuple_lemma cat-comp_wf functor-arrow-comp cat_comp_tuple_lemma cat-comp-ident cat-comp-assoc squash_wf true_wf istype-universe
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt cut sqequalHypSubstitution hypothesis universeIsType introduction extract_by_obid isectElimination thin hypothesisEquality productEquality applyEquality instantiate sqequalRule universeEquality spreadEquality setEquality because_Cache functionEquality inhabitedIsType productIsType productElimination setIsType equalityIsType1 lambdaEquality_alt independent_isectElimination dependent_set_memberEquality_alt dependent_functionElimination isect_memberEquality_alt voidElimination applyLambdaEquality setElimination rename equalityTransitivity equalitySymmetry hyp_replacement independent_pairFormation imageElimination natural_numberEquality imageMemberEquality baseClosed

Latex:
\mforall{}C:SmallCategory.  \mforall{}P:Presheaf(C).    (el(P)  \mmember{}  SmallCategory)



Date html generated: 2020_05_20-AM-07_57_13
Last ObjectModification: 2018_11_10-AM-11_35_10

Theory : small!categories


Home Index