Nuprl Lemma : functor-arrow-id

[C,D:SmallCategory]. ∀[F:Functor(C;D)].
  ∀x:cat-ob(C). ((F (cat-id(C) x)) (cat-id(D) (F x)) ∈ (cat-arrow(D) (F x) (F x)))


Proof




Definitions occuring in Statement :  functor-arrow: arrow(F) functor-ob: ob(F) cat-functor: Functor(C1;C2) cat-id: cat-id(C) cat-arrow: cat-arrow(C) cat-ob: cat-ob(C) small-category: SmallCategory uall: [x:A]. B[x] all: x:A. B[x] apply: a equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] cat-functor: Functor(C1;C2) and: P ∧ Q mk-functor: Error :mk-functor,  top: Top
Lemmas referenced :  cat-ob_wf cat-functor_wf small-category_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lambdaFormation sqequalHypSubstitution setElimination thin rename productElimination sqequalRule extract_by_obid dependent_functionElimination isect_memberEquality voidElimination voidEquality hypothesis hypothesisEquality isectElimination lambdaEquality axiomEquality because_Cache

Latex:
\mforall{}[C,D:SmallCategory].  \mforall{}[F:Functor(C;D)].    \mforall{}x:cat-ob(C).  ((F  x  x  (cat-id(C)  x))  =  (cat-id(D)  (F  x)))



Date html generated: 2020_05_20-AM-07_51_04
Last ObjectModification: 2017_01_10-PM-00_32_26

Theory : small!categories


Home Index