Step * 1 3 1 1 of Lemma bs_tree_delete_wf


1. Type
2. cmp comparison(E)
3. E
4. left bs_tree(E)
5. value E
6. right bs_tree(E)
7. bs_tree_ordered(E;cmp;left)
8. bs_tree_ordered(E;cmp;right)
9. ∀x:E. (x ∈ left  0 < cmp value)
10. ∀x:E. (x ∈ right  0 < cmp value x)
11. bs_tree_ordered(E;cmp;bs_tree_delete(cmp;x;right))
12. bs_tree_ordered(E;cmp;bs_tree_delete(cmp;x;left))
13. 0 < cmp value
⊢ bs_tree_ordered(E;cmp;bst_node(bs_tree_delete(cmp;x;left);value;right))
BY
((RepUR ``bs_tree_ordered`` THEN Fold `bs_tree_ordered` 0) THEN Auto) }

1
1. Type
2. cmp comparison(E)
3. E
4. left bs_tree(E)
5. value E
6. right bs_tree(E)
7. bs_tree_ordered(E;cmp;left)
8. bs_tree_ordered(E;cmp;right)
9. ∀x:E. (x ∈ left  0 < cmp value)
10. ∀x:E. (x ∈ right  0 < cmp value x)
11. bs_tree_ordered(E;cmp;bs_tree_delete(cmp;x;right))
12. bs_tree_ordered(E;cmp;bs_tree_delete(cmp;x;left))
13. 0 < cmp value
14. bs_tree_ordered(E;cmp;bs_tree_delete(cmp;x;left))
15. bs_tree_ordered(E;cmp;right)
16. x@0 E
17. x@0 ∈ bs_tree_delete(cmp;x;left)
⊢ 0 < cmp x@0 value


Latex:


Latex:

1.  E  :  Type
2.  cmp  :  comparison(E)
3.  x  :  E
4.  left  :  bs\_tree(E)
5.  value  :  E
6.  right  :  bs\_tree(E)
7.  bs\_tree\_ordered(E;cmp;left)
8.  bs\_tree\_ordered(E;cmp;right)
9.  \mforall{}x:E.  (x  \mmember{}  left  {}\mRightarrow{}  0  <  cmp  x  value)
10.  \mforall{}x:E.  (x  \mmember{}  right  {}\mRightarrow{}  0  <  cmp  value  x)
11.  bs\_tree\_ordered(E;cmp;bs\_tree\_delete(cmp;x;right))
12.  bs\_tree\_ordered(E;cmp;bs\_tree\_delete(cmp;x;left))
13.  0  <  cmp  x  value
\mvdash{}  bs\_tree\_ordered(E;cmp;bst\_node(bs\_tree\_delete(cmp;x;left);value;right))


By


Latex:
((RepUR  ``bs\_tree\_ordered``  0  THEN  Fold  `bs\_tree\_ordered`  0)  THEN  Auto)




Home Index