Nuprl Lemma : bs_tree_delete_wf
∀[E:Type]. ∀[cmp:comparison(E)]. ∀[x:E]. ∀[tr:ordered_bs_tree(E;cmp)].
(bs_tree_delete(cmp;x;tr) ∈ ordered_bs_tree(E;cmp))
Proof
Definitions occuring in Statement :
bs_tree_delete: bs_tree_delete(cmp;x;tr)
,
ordered_bs_tree: ordered_bs_tree(E;cmp)
,
comparison: comparison(T)
,
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
universe: Type
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
ordered_bs_tree: ordered_bs_tree(E;cmp)
,
prop: ℙ
,
all: ∀x:A. B[x]
,
so_lambda: λ2x.t[x]
,
implies: P
⇒ Q
,
so_apply: x[s]
,
guard: {T}
,
bs_tree_delete: bs_tree_delete(cmp;x;tr)
,
bs_tree_ordered: bs_tree_ordered(E;cmp;tr)
,
bst_null: bst_null()
,
bs_tree_ind: bs_tree_ind,
true: True
,
bst_leaf: bst_leaf(value)
,
comparison: comparison(T)
,
bool: 𝔹
,
unit: Unit
,
it: ⋅
,
btrue: tt
,
uiff: uiff(P;Q)
,
and: P ∧ Q
,
uimplies: b supposing a
,
ifthenelse: if b then t else f fi
,
bfalse: ff
,
exists: ∃x:A. B[x]
,
or: P ∨ Q
,
sq_type: SQType(T)
,
bnot: ¬bb
,
assert: ↑b
,
false: False
,
bst_node: bst_node(left;value;right)
,
less_than: a < b
,
less_than': less_than'(a;b)
,
top: Top
,
squash: ↓T
,
not: ¬A
,
cand: A c∧ B
,
sq_stable: SqStable(P)
,
trans: Trans(T;x,y.E[x; y])
Lemmas referenced :
bs_tree_delete_wf1,
bs_tree_ordered_wf,
ordered_bs_tree_wf,
comparison_wf,
bs_tree-induction,
bs_tree_wf,
true_wf,
eq_int_wf,
bool_wf,
eqtt_to_assert,
assert_of_eq_int,
eqff_to_assert,
equal_wf,
bool_cases_sqequal,
subtype_base_sq,
bool_subtype_base,
assert-bnot,
neg_assert_of_eq_int,
bst_node_wf,
lt_int_wf,
assert_of_lt_int,
top_wf,
less_than_wf,
member_bs_tree_wf,
member-bs_tree_delete-implies,
bst_null?_wf,
bs_tree_max_wf,
set_wf,
all_wf,
or_wf,
not_wf,
assert_wf,
sq_stable__bs_tree_ordered,
strict-comparison-trans
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
isect_memberFormation,
introduction,
cut,
sqequalHypSubstitution,
setElimination,
thin,
rename,
dependent_set_memberEquality,
extract_by_obid,
isectElimination,
cumulativity,
hypothesisEquality,
hypothesis,
sqequalRule,
axiomEquality,
equalityTransitivity,
equalitySymmetry,
isect_memberEquality,
because_Cache,
dependent_functionElimination,
universeEquality,
lambdaEquality,
functionEquality,
independent_functionElimination,
lambdaFormation,
natural_numberEquality,
applyEquality,
unionElimination,
equalityElimination,
productElimination,
independent_isectElimination,
dependent_pairFormation,
promote_hyp,
instantiate,
voidElimination,
lessCases,
sqequalAxiom,
independent_pairFormation,
voidEquality,
imageMemberEquality,
baseClosed,
imageElimination,
productEquality
Latex:
\mforall{}[E:Type]. \mforall{}[cmp:comparison(E)]. \mforall{}[x:E]. \mforall{}[tr:ordered\_bs\_tree(E;cmp)].
(bs\_tree\_delete(cmp;x;tr) \mmember{} ordered\_bs\_tree(E;cmp))
Date html generated:
2017_10_01-AM-08_31_43
Last ObjectModification:
2017_07_26-PM-04_25_06
Theory : tree_1
Home
Index